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Foreword

Foreword

This report is a direct step for the implementation of the Accident 
Analysis Module in the Interactive Highway Safety Design Model 
(IHSDM). The Accident Analysis Module is expected to estimate the 
safety of two-lane rural highway characteristics for existing and new 
projects. Several accident models are developed to estimate accident 
frequencies. The three main models are for road segments (with non-
intersection accidents), one-way stop-controlled intersections with 
three legs, and two-way stop-controlled intersections with four legs. 
This report describes the collection, analysis, and modeling of 
accidents on rural roads in Minnesota (1985-1989) and Washington 
State (1993-1995).

Models of the Poisson type, negative binomial type, and extended 
negative binomial type are developed, and advanced statistical 
techniques are applied to assess the explanatory value of the models 
in the presence of Poisson randomness and overdispersion. The 
models derived from these data indicate that exposure and traffic 
counts are the chief highway variables contributing to accidents. Other 
variables that affect accidents on road segments are: lane width, 
shoulder width, horizontal and vertical alignments, roadside conditions, 
and driveway density. Other variables that affect accidents at 
intersections are: vertical and horizontal alignments, roadside 
conditions, number of driveways, posted speed, approach angles, and 
turning lanes.
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Notice

This document is disseminated under the sponsorship of the 
Department of Transportation in the interest of information exchange. 
The United States Government assumes no liability for its contents or 
use thereof. This report does not constitute a standard, specification, 
or regulation.

The United States Government does not endorse products or 
manufacturers. Trade and manufacturer’s names appear in this report 
only because they are considered essential to the object of the 
document.
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advanced statistical techniques are applied to assess the explanatory 
value of the models in the presence of Poisson randomness and 
overdispersion.

The models derived from these data indicate that exposure and traffic 
counts are the chief highway variables contributing to accidents, but that 
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significant, especially in the segment models. Unexpected behavior of 
intersection angle, Roadside Hazard Rating, number of driveways, and 
channelization in the intersection models is worthy of note. Despite the 
incompleteness of the data and uncertainties in the values of some 
variables, the quantity, quality, and variety of the data give the models 
both descriptive and predictive value. 
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1-Introduction

1. Introduction

Estimating the number of accidents that may result for a given 
highway design is a matter of great interest to the highway engineering 
community. Numerous studies have been performed in this area (see 
McGee et al. and references cited therein) with the aim of determining 
the effects of different design elements and their relative importance. 
Since safety is a primary consideration in highway design, the safety 
consequences of highway design features have been and will remain 
a matter of continuing interest. 

The present study was undertaken in connection with the development 
of the Interactive Highway Safety Design Model (IHSDM). The IHSDM 
is envisioned as a set of tools to assist the highway designer. In 
particular it is expected to include an Accident Analysis Module that 
will relate accidents to highway variables along segments and at 
intersections. Rural roadways tend to have high accident rates, and 
adequate models for these roadways are especially desirable. This 
study focuses on segments of rural two-lane roads and on three- and 
four-legged intersections on such roads, stop-controlled on the minor 
leg or legs. 

The study makes use of Highway Safety Information System (HSIS) 
data for two States, Minnesota and Washington. Accident data 
(including both severity and type), traffic data, lane and shoulder width 
data, and some alignment data are available in HSIS files. Data were 
also obtained from photologs and, in the case of Minnesota, 
construction plans. These data include horizontal and vertical 
alignments, channelization, driveways, and Roadside Hazard Rating. 
The latter is a measure of sideslope and clear zone proposed by 
Zegeer et al. (1987).

The analysis and modeling on the data sets have been performed with 
SAS software. SAS includes a variety of procedures for summarizing 
univariate and multivariate statistics and for modeling the relationship 
between a variable such as number of accidents and covariates such 
as traffic volumes and highway design variables.

Accident models are typically of Poisson and generalized linear form. 
The number of accidents in in a given space-time region is regarded 
as a random variable that takes values 0, 1, 2, ... with probabilities 
obeying the Poisson distribution. A characteristic feature of this 
distribution is that the variance, or mean squared deviation of this 
variable, is equal to its mean. The mean number of accidents is 
assumed to be an exponential applied to a suitable linear combination 
of highway variables. Thus the model falls under the heading of a 
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generalized linear model. The exponential function guarantees that the 
mean is positive.

More recently negative binomial models, a variant of the Poisson, 
have been used in accident modeling. Such models generalize the 
Poisson form by permitting the variance to be overdispersed, equal to 
the mean plus a quadratic term in the mean whose coefficient is called 
the overdispersion parameter. When this parameter is zero, a Poisson 
model results. When it is larger than zero, it represents variation above 
and beyond that due to the highway variables present in the model. 
Such variation is due to accident-related factors pertaining to drivers, 
vehicles, and location not encompassed by the highway variables. The 
LIMDEP software package, or SAS-based programs, can be used to 
develop negative binomial models. 

In addition, Shaw-Pin Miaou has developed an "extended" negative 
binomial model that permits variables with multiple values along a 
roadway to be treated in disaggregate form, value by value, rather 
than in aggregate form, by averages over the whole roadway. Highway 
segments are not truly homogeneous even if shoulder widths, lane 
widths, speed limits, and the like stay constant along them. Other 
variables, such as horizontal and vertical alignments, are subject to 
variation within the typical segment. The extended negative binomial 
model aims to capture the effect of such inhomogeneities.

In the following chapters the literature is reviewed; the data collection 
methodology is described in detail; the data analysis is presented; 
accident models of Poisson, negative binomial, and extended negative 
binomial type are exhibited; and validation and additional analyses are 
performed. The modeling chapter includes logistic modeling of 
accident severities on the Minnesota data. The last chapter presents 
the final models (obtained earlier in Tables 27 and 35) in the form of 
equations and exhibits associated Accident Reduction Factors. Two 
appendices offer additional information about the Minnesota 
population and the final model equations in metric form, respectively. 

Some of the results in this report are to be found in the article by Vogt 
and Bared (1998).
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2-Literature Review

2. Literature Review 

This chapter surveys the modeling literature pertaining to highway 
segments and intersections and reviews variables used in past 
studies. It also includes a discussion of artificial neural networks.

Segment Models

Segment Variables

Intersection Models

Intersection Variables

Artificial Neural Networks
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3. Data Collection

This chapter discusses the populations on which the study is based 
and how samples were selected from these populations, how sample 
data were collected, and the limitations on the quality of the sample 
data. Table 1 gives a list of the chief variables collected.

The Populations and Sample Selection

How Data Were Collected

Limitations on Data Quality

Summary
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4. Analysis

To analyze the data acquired for the segments and intersections, a 
variety of new variables were developed based on the originally 
collected variables. It has already been noted that the traffic variables 
used for modeling the Minnesota intersections were obtained from the 
original variables by applying growth factors from nearby segments. 
There was significant variation in the number and size of vertical and 
horizontal curves from segment to segment and from one intersection 
to the next. Thus aggregate variables were developed for vertical and 
horizontal alignment to summarize alignment data and permit direct 
comparison of one observation with another. Other variables were 
developed for such items as exposure, driveway density, and 
intersection density. A speed variable was developed from the multiple 
speed variables collected.

For both the new variables and the old, univariate statistics were 
compiled showing their distributions in each data set. In preparation for 
the modeling effort, bivariate comparisons were also done to reveal 
correlations between variables and to clarify relationships among 
variables.

In this chapter we discuss the new variables and exhibit and review 
the univariate and bivariate statistics for both old and new variables. 
See the Index of Variables, at the beginning of this report, for a 
comprehensive listing of variables used in the modeling.

New Variables

Univariate Statistics

Bivariate Statistics

Summary
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5. Modeling

In this chapter the modeling effort is described. The chapter begins 
with a discussion of Poisson and negative binomial modeling and 
goodness-of-fit measures. Then models are developed for the 
Minnesota and Washington segments and the behavior of the 
variables is examined. We pass then to an extended negative binomial 
model developed by Shaw-Pin Miaou that attempts to capture the 
effect of variation along a roadway. In our case this can be applied to 
horizontal curvatures, vertical curves, and straightaway grades along 
the segments. The extended negative binomial methodology is applied 
to the Minnesota segments, to the Washington segments, and then 
jointly to the combined segments with a variable for the State. 
Thereafter Poisson and negative binomial models are developed for 
the four intersection data sets and for the combined intersection data 
sets. Most of the models attempt to represent the mean total number 
of accidents (TOTACC), but we also include a few models of serious 
accidents (INJACC) as well. Finally logistic regression models for 
accident severity are developed and evaluated.

Poisson and Negative Binomial Modeling Techniques

Segment Models

Intersection Models

Logistic Modeling

Summary
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6. Validation and Further Analysis 

This chapter is devoted to miscellaneous analytical tasks relevant to 
possible uses of the models:

• Validation tests are performed to measure the predictive efficacy of 
the leading models. The Minnesota models are tested against 
Minnesota data from a later time period (1990-1993) on the same 
segments and intersections. They are also tested against Washington 
data, and the Washington segment model and the combined segment 
model are tested on Minnesota data from 1985-89 and 1990-93.

• The relative explanatory value of different groups of variables in the 
final models (Tables 27 and 35) is assessed by means of the Log-
Likelihood R-squared introduced in Chapter 5.

• Scaled residuals (observed accident counts minus predicted mean 
accident counts divided by estimated standard error) are compared 
graphically with leading variables to check for systematic trends that 
might contradict the assumed model form or suggest model 
refinements. 

Validation

Explanatory Value of Final Models

Cumulative Scaled Residuals

Summary
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7. Conclusions

We present the final models of this study in the form of equations and make a 
few remarks about their significance. Appendix 2 gives the equations in metric form.

The final models proposed in this study are the following:

I. Segments of two-lane rural roads (Table 27)

Extended Negative Binomial Model with K = .306

 

NOTE: Each set of weights WH{i}, WV{j}, and WG{k} separately must sum to 1. 
To ensure this, usually it is necessary to insert one artificial horizontal curve with 
DEG = 0, one artificial crest with V = 0, and one artificial straightaway with GR = 
0, each one having whatever weight is needed to make the sum equal 1.

II. Three-legged intersections of two-lane rural roads, stop-controlled on the minor 
road (Table 35)
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III. Four-legged intersections of two-lane rural roads, stop-controlled on the minor 
road (Table 35)
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These models yield the Accident Reduction Factors shown in Table 49 below. 
Recall that the Accident Reduction Factor is the percentage decrease in 
mean predicted accident count when a variable is increased by one unit, all 
other variables being held fixed. A negative value signifies that accidents increase 
by that percentage when the variable is increased by one unit.

TABLE 49. Accident Reduction Factors for the Final Models

 

Segment Model (Table 
27) 

3-Legged Intersection

Model (Table 35) 

4-Legged Intersection 

Model (Table 35) 

LW +8.1%    

  

 

  

 

  

 

SHW 

+5.7%    
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RHR 

-6.9% RHRI -18.8%    

  

 

DD 

-0.84%    

  

 

ND 

-13.1% 

DEG -4.6% HI -3.4% HI -4.6% 

V -59.2% VCI -33.7% VCI -33.4% 

GR -11.0%    

  

 

  

 

  

 

  

 

  

 

HAU 

-0.5% HAU +.5% 

The Accident Reduction Factors for DD and ND are roughly comparable. Since DD 
= ND times 5280 divided by 500, the coefficient 0.0084 of DD in the segment 
model (Table 27) translates into a coefficient 0.0887 of ND and an Accident 
Reduction Factor of -9.3% for an intersection model, as compared with -13.1% in 
the actual four-legged intersection model (Tables 35 and 49).

The ultimate use of models such as these is to aid the highway designer to 
improve highway safety and to determine what design measures will do this 
most effectively. The coefficients proposed for each of the models - in Tables 27 
and 35 and in the equations above - are directly translatable into predicted 
accident counts and Accident Reduction Factors. Even if the models considered 
here were taken to be definitive, each coefficient has an estimated standard 
deviation or standard error (shown in Tables 27 through 35), and there is no reason 
to believe that the estimated coefficients are known to much greater accuracy than 
one standard deviation. For a normal random variable about 68% of measured 
values lie within one standard deviation of the mean. In addition there are 
numerous uncertainties that cannot be quantified in the highway variables. 
Variables such as ADT are crude averages over time, and some variables are 
incorrect for unknown causes (new construction without plans to confirm the 
change, data entry errors in one of the multiple data bases from which the data 
are obtained, inaccuracies in location of accidents, mileposts, alignments, etc.).

One informal way to estimate the error in a coefficient is to examine alternative 
models and note how coefficients vary from model to model. As well as referring to 
the literature for models obtained by other investigators, one may compare the 
different models in this study in Tables 21 through 37. Although there is some 
stability in coefficients as one passes from Poisson to negative binomial to 
extended negative binomial, there is less as one passes from one State to another, 
or from all accidents to injury accidents.

Of great importance for the practical utility of models such as the ones presented 
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here is the issue of how to adapt them to different States and regions and/or 
different time epochs. In general what is needed is a multiplier that can be applied to 
a standard model to adjust it to a different State or region (for example, New 
England versus the Great Plains) and/or a different era (1999 versus 2001-2005), 
to circumstances in which drivers, vehicles, law enforcement, and demographics 
may differ from those under which the standard model was developed. 
Engineering judgment together with historical data from different States and eras 
can be used to develop multipliers. Alternatively, a small recent sample of accidents 
in a region can be compared with predictions from the standard model and 
an adjustment factor derived from the sample. Yet another approach is the 
Empirical Bayesian one: combine past data on a particular segment or intersection 
with a standard model of negative binomial type as discussed in Hauer et al. (1988).

Although the segment model developed here summarizes data from two 
reasonably diverse States (and two epochs), the intersection models are based 
on Minnesota alone. In Table 42 they have only partial success when applied 
to Washington State. Moreover, the design variables (e.g., Roadside Hazard 
Rating, number of driveways, channelization, and intersection angle) behave 
in unexpected ways as one moves from three-legged intersections to four-legged 
ones. These peculiarities, as well as the relatively high accident rates at 
intersections, suggest that intersection studies should continue as a highway 
safety research priority.
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Appendix 1

APPENDIX 1 - Statistics on the Minnesota Populations

Percentage of Accidents versus Accident and Vehicle Variables

for Three-legged and Four-legged Intersections and Segments

(Minnesota two-lane rural roads, 1985-1989)

http://www.tfhrc.gov/safety/98133/ch09/ch09.html (1 of 5) [19/03/2008 11.30.39]



Appendix 1

949 three-legged intersections and 1,440 accidents 

1,156 four-legged intersections and 2,028 accidents 

3,308 segments and 8,083 accidents 
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*3,308 segments with 8,083 non-intersection accidents were studied, but the 
constraint that shoulder type remain the same from left to right and throughout the 
time period 1985-1989 reduces these to 3,203 segments. Of these two had 
no shoulders, yielding the numbers shown above. 
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APPENDIX 2 - Final Models in Metric Units

The metric versions of the final models are:

I. Segments of two-lane rural roads (Table 27 in metric form)

II. Three-legged intersections of two-lane rural roads, stop-controlled on the minor 
road (Table 35 in metric form)
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III. Four-legged intersections of two-lane rural roads, stop-controlled on the minor 
road (Table 35 in metric form)
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Segment Models

2. Literature Review 

Segment Models

Miaou et al. (1993) used a model of Poisson type to estimate accidents along 
highway segments. Although the model was applied to truck accidents, it is 
applicable to other vehicles on a highway. Poisson regression provides one of the 
most suitable models because vehicle accidents are discrete rare events and 
accident counts are nonnegative integers. Accidents are usually positively 
skewed because of the high proportion of highway segments without 
accidents. Poisson regression models provide an easy linkage to probability, 
as opposed to other commonly used models such as multiple linear regression. 
The form of the model is:

 

For the i-th segment 

x1i = Average daily traffic per lane (in thousands of vehicles)

x2i = Horizontal curvature (in degrees per hundred feet)

x3i = x2i * horizontal curve length (in miles)

x4i = Deviation of stabilized outside shoulder width per direction from 12 ft (in feet)

x5i = Percent trucks in traffic stream. 

The estimated value of i is always non-negative and is represented by a 
loglinear function of explanatory variables xji related to geometry, traffic, and 
other highway characteristics. With respect to the underlying Poisson assumption 
that the mean equals the variance, the model for two-lane rural segments is not 
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very satisfactory since the estimated ratio of variance to mean, 1.36, is not close 
to one. A negative binomial regression model was proposed to allow 

for overdispersion, with variance equal to mean plus an extra term of the form K(

i )2. The quantity K is the overdispersion parameter. The regression coefficients 
in the negative binomial model are similar to those of the Poisson model. However, 
the negative binomial allows for additional variance representing the effect of 
omitted variables. 

Poisson and negative binomial modeling techniques are believed to be robust 
and quite suitable for accident modeling. One weakness of the above model, though, 
is the minuscule frequency of truck accidents, since they constitute a very 
small proportion of total accidents, even though the highway sample of 14,731 
lane-miles extending over a 5-year period is large. Another weakness may be 
ascribed to a highly significant variable, truck ADT (Average Daily Traffic). This 
variable was acquired from the Highway Performance and Monitoring System 
(HPMS), a separate data source that was integrated with the original data. Whether 
the values of truck ADT were sufficiently local to represent the truck traffic on a 
given segment adequately is not known.

The report of Luyanda et al. utilized a variety of multivariate statistical techniques 
to investigate relationships between the major factors of rural highway conditions 
and accident occurrences. Cluster analysis, discriminant analysis, factor analysis, 
and linear regression were applied in stepwise fashion. Highway segments 
were divided into three groups: multi-lane segments, two-lane segments in flat 
and rolling terrain, and two-lane segments in hilly terrain. Comparisons were 
made between groups and within groups. Within the multi-lane segments, 
the significant variables identified by discriminant analysis were different from 
those identified by stepwise regression. For the other two groups, the R2 values 
were disappointingly low, 0.23 and 0.07, respectively. The report should be 
regarded as exploratory because of uncertainties in accident location and the 
small sample size. Although the results of the discriminant analysis seem to be 
reliable, they do not give a safety evaluation, but rather a classification by 
grouping. The assumption of linearity in the regression analysis is simplistic and 
should be refined. Moreover, highway segments and intersections were 
not differentiated to permit classification of accidents into segment accidents 
or intersection accidents.

The reports of Zegeer et al. (1986), Mak (1987), and Zegeer et al. (1991) 
applied regression techniques to develop accident models for two-lane roads. 
The model for cross-section safety on two-lane highways proposed by Zegeer et 
al. (1986) is:
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The accidents considered in this model are single vehicle accidents, head-
on accidents, and same and opposite direction sideswipe accidents. 

A quadratic model for accidents on bridges was developed by Mak (1987):

Zegeer et al. (1991) developed a model for accidents on horizontal curves:

 

The last-mentioned study, Zegeer et al. (1991), reviewed data base 
characteristics, determined the important variables through a preliminary analysis, 
and then proceeded to model building. The preliminary analysis made use of 
several multiple linear regression models to identify significant or "important" 
variables. The authors reported that a linear accident rate model was much better 
than a log-linear model. For a nonlinear model they adopted and reparametrized 
an existing model. This model was a hybrid, with both linear and 
nonlinear components. Although the required statistical assumptions were not 
fully stated, use of the least-squares method was based on the assumption that 
the residuals would follow a normal or log-normal distribution. Because 
accident distributions are skewed to the right, normality is not a tenable assumption.

Arguing that previous efforts were not sufficiently successful in attributing accidents 
to individual geometric elements and traffic characteristics, Kuo-Liang and Chin-
Lung (1988) explored a technique that purported to remove the assumptions 
of normality and linearity. Their model was developed for two-lane rural roads. 
A technique called Automatic Interaction Detection (AID) was used to group 
roadway segments by selected or created categories of explanatory variables. 
These categories of variables maximize the difference between group sums 
of squares. Then a model was developed by the Multiple Analysis Classification 
(MAC) technique of the following form:

http://www.tfhrc.gov/safety/98133/ch02/ch02_01.html (3 of 4) [19/03/2008 11.30.50]



Segment Models

where

Yij...n = the score of unit n that falls in category i of predictor A, category j of predictor 

B, etc

Y = grand mean of the dependent variable

Ai = the effect of membership in the i-th category of predictor A

Bj = the effect of membership in the j-th category of predictor B

...

Eij...n = error term for this unit.

This method, though in part innovative, is still a variation on simple linear 
regression and accounts for only 33% of the total variance. The low predictive 
power may also be due to the lack of a horizontal alignment variable and small 
sample size.

Durth (1989) used risk analysis to perform highway safety evaluation. This is 
quite different from conventional approaches to accident analysis and modeling. 
The method is well-known in the fields of nuclear power plants and chemical 
factories. Based on research in Germany from 1986, the claim is made that 
risk analysis can be successfully applied to traffic safety. A risk model relies on 
diverse information in modular and hierarchical form from different branches 
of sciences (medicine, mechanical engineering, civil engineering, psychology, etc.). 
It reconstructs known dependencies and identifies relationships that need to 
be verified. Although the method may be promising, the report of Durth does not 
clearly describe the substance of the research. Nor does it indicate how to develop 
the stated dependencies and how to verify them practically.

Kulmala and Roine (1988) developed models for Finnish roads. They assumed 
a Poisson error distribution and intended their models to be used for prediction. 
Their typical model form was:

where

A = total number of fatal and injury accidents on a segment

S = exposure in vehicle-kilometers

xi = explanatory variables such as surface width in meters, percentage of the 

segment length for which passing sight distance exceeds 300 meters, percentage 
of heavy vehicles, average curvature, and an interaction variable (pavement and 
speed limit).

This multiplicative Poisson regression model is comparable to that of Miaou et 
al. (1993).
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2. Literature Review 

Segment Variables

Average Daily Traffic (ADT)

ADT is one of the most significant variables in predicting accidents, yet it is 
not controllable. Many models have used traffic exposure as a dependent 
variable although its relationship with accident counts is not fully linear. In general, it 
is recommended to use ADT as an independent variable for greater accuracy 
because it interacts with other controllable variables, and it measures the effect 
of traffic flow intensity (Hauer, 1994).

Lane Width, Shoulder Width, and Shoulder Type

Modeling approaches vary from study to study, and techniques of data collection 
and analysis likewise vary. Thus the effect of lane width and shoulder width on 
accident frequency has some variation in different studies. Generally it has been 
found that accident rates decrease when lane and shoulder widths increase. The 
report by Zegeer et al. (1986) on the effect of cross-section for two-lane rural 
roads indicated that a paved shoulder widening of 2 feet per side reduces accidents 
by 16%, while reports of Miaou et al. (1993) and Zegeer et al. (1986) found 
reductions of 8% and 6.6%, respectively. The latter two reports take into 
account horizontal curvature and curve length as explanatory variables, while 
the former does not explicitly include horizontal alignment. Luyanda et al. 
(1983) showed that shoulder type, an amalgam that includes width and surface type, 
is a significant variable but did not define this variable in detail. The synthesis 
of Jorgensen (1978) reported a negative relationship between accidents and 
shoulder width for two-lane rural highways on the basis of studies done primarily in 
the 1950's and 1960's. Variation of shoulder width for Interstate Highways and 
other freeways exists mostly along the inside shoulder, and older reports indicate 
that accidents increase as the inside shoulder width increases, contrary to the 
findings of Miaou et al. (1993). The increase of accidents with inside shoulder 
width may be due to emergency parking on wider shoulders or to insufficient 
accident history in the older studies. 

Horizontal and Vertical Alignment

Horizontal and vertical alignment can be expressed in alternative ways to capture 
the effect of individual curves (disaggregate) or a sequence of curves 
(aggregate). Examples of measures of horizontal curvature are as follows:
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where L is the segment length in miles and {i} is the absolute horizontal 
angle between the i-th and (i+1)-th tangents, in degrees. Here AC is aggregate and 

{i} is disaggregate. Vertical grade variables can be expressed similarly. 
Researchers have used both aggregate explanatory variables (Polus, 1980; 
Kulmala and Roine, 1988) and disaggregate ones (Miaou et al. 1993; Zegeer et 
al., 1991) in the modeling process, although aggregate variables are not directly 
helpful to designers who are improving individual curves. Nevertheless, 
aggregate variables are useful as surrogates in evaluating alignment safety. In most 
of the referenced reports, the results confirm the common sense opinion that 
sharper and longer curves result in more accidents, regardless of whether 
the statistical techniques applied are multiple linear regression or generalized 
linear models.

Roadside and Terrain Condition

When roadside features such as slopes, guardrails, trees, poles, etc. are 
considered separately, the portion of accident rates explained by roadside features 
is weak. The reports by Graham and Harwood (1982) and Zegeer et al. (1986) 
indicate this drawback. Zegeer et al. (1991) reported that mountainous terrain type 
has a negative effect on safety. Zegeer et al. (1987), as noted in Chapter 1, 
packaged the roadside variables in a subjective measure called Roadside 
Hazard Rating based on visual evaluation of clear zone and sideslope. 
Roadside Hazard Rating takes numerical values from one to seven. This 
measure "indicates the accident damage likely to be sustained by errant vehicles on 
a scale from one (low likelihood of an off-road collision or overturn) to seven 
(high likelihood of an accident resulting in a fatality or severe injury)." On a 
segment length with variable hazards, an average or middle value is assigned.

Speed

Various attempts have failed to find relationships between accidents and 
speed, whether the latter is design speed, posted speed, or operating speed. One 
of the few models where speed is considered comes from Finland (Kulmala and 
Roine, 1988). A report of Fridstrøm et al. (1995) indicates that a change in 
posted speed lowered fatal accidents in Denmark.

Driveways

The influence of driveway accidents was highlighted by two studies (Fee et al., 
1970; McGuirk and Staterly, 1976). Driveway density and driveway spacing were 
found to be significant safety factors. McGuirk and Staterly (1976) developed a 
linear model for accident rates Y:

 

where X is driveway spacing. Figure 1, illustrating the relationship of accidents 
to driveway density, appears in Cirillo (1992), and was taken from the report of Fee 
et al. (1970).
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2. Literature Review 

Intersection Models 

The methodology and statistical techniques used in a series of three 
reports (Lau and May, 1989; Lau and May, 1988; Naclerio et al., 1989) 
on signalized and unsignalized intersections are of interest to 
intersection modelers. Accident prediction models were developed to 
identify locations where accident experience was more frequent or 
more severe than normal, and to evaluate the safety consequences of 
alternative improvements. Factors and highway characteristics 
reported in the California data base were included in the model: 
accident data, traffic volumes, intersection features, and control types. 
However, variables such as degree of horizontal curvature and rate of 
vertical curvature, believed to be important, were not included. Unlike 
other partial studies, these models encompass all types of 
intersections, and the methodology addresses the successive stages 
of planning, design, and site improvement. 

Three types of accident severity were modeled separately: fatal, injury, 
and property damage only. Collision types such as angle, rear-end, 
etc., that may further explain the cause of accidents were missing from 
the model. A nonparametric statistical modeling technique known as 
the Classification Regression Tree (CART) was used to group 
intersections by significance of prediction. The response variable was 
number of accidents per year, with traffic volume used only as an 
explanatory variable. The CART technique has particular applicability 
to categorical and discontinuous variables. However, the classification 
obtained was not sufficiently detailed to reveal the effect of individual 
highway factors. For injury accidents, nine groups of signalized 
intersections were identified, and eight groups were identified for 
property damage only accidents. The model for fatal accidents was not 
reliable, with a correlation coefficient of only 0.009. As a starting point 
for the analysis of relationships, intersections are categorized by 
highway functional classification into groups that are assumed to 
perform differently. The potential for application to optimization, i.e., to 
help the designer choose highway characteristics that will minimize the 
expected number of accidents, was noted but no application was 
made. Another caveat of this methodology is implied in its tendency to 
produce a grouping not much different from the existing conventional 
State grouping. 

Hauer et al. (1988) developed accident prediction models for 
signalized intersections by maneuver patterns (15 defined conflict 
patterns) before the occurrence of accidents. Each pattern involved at 
most two conflicting flows. A typical model form is as follows:
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where 

●     E(m) = expected number of accidents for maneuver pattern m
●     F1 = traffic flow of turning movement 1
●     b1 = power of F1

●     F2 = traffic flow of turning movement 2
●     b2 = power of F2.

Equations were derived for each of the 15 pre-accident patterns to 
compute the expected number of accidents. These equations can also 
be used to estimate the kinds of accident caused by traffic flow 
patterns. Their design consequences are limited because they are 
based exclusively on traffic flow variables, and these are 
uncontrollable. Unlike traffic flow patterns, physical elements such as 
channelization and alignment are manageable safety improvements. 
On the other hand, the models are negative binomial in form. This 
form, as the authors indicate, has the attractive feature that it can be 
modified by empirical Bayesian techniques to incorporate actual 
experience at an individual intersection. 

Garber and Srinivasan (1991) used traffic flow (left-turn volumes) 
movements as explanatory variables for predicting accidents during 
peak-hours and otherwise. Besides safety evaluations, these models 
are favorable for improvements such as installing left turn lanes and 
adding protected phasing. Despite high R2 values, the simple linear 
regression models used in this study are inadequate for discrete 
events such as accidents that have a very low mean and are not 
normally distributed. Moreover, these models predict accidents for 
elderly drivers, a small segment of the driver population.
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2. Literature Review  

Intersection Variables

Traffic Flow

Traffic flows (ADT) have often been used as measures of exposure or 
as explanatory variables in modeling accidents at intersections. Many 
accident studies have used intersection accident rates in the form of 
accidents per million entering vehicles (Kuciemba and Cirillo, 1992). 
This type of rate has been used for safety performance evaluations 
and safety comparisons even though it does not take into account the 
magnitude of conflicting movements. Another common way to 
measure intersection accident rates is in accidents per unit time. 
McDonald (1966) exhibited a model relating accident frequency 
(accidents per year) to a product of powers of the cross-road and 
major road entering ADT.

where 

●     N = number of accidents per year 
●     Vm = major road ADT in vehicles per day

●     Vc = cross-road ADT in vehicles per day.

Leong (1973) proposed comparable but simpler models of the form:

A method for handling exposure measures developed by Surti (1965) 
was applied by Hakkert and Mahalel (1978). The latter authors 
proposed that accident frequency is linearly related to an exposure 
measure X, called index flow, calculated as the sum of the products of 
the flows at each of 24 conflict points defined by Surti. The model for 
urban intersections is as follows:

 

Hauer et al. (1988), as already noted, used traffic flows for each 
conflict pattern to predict accidents, found different functional forms 
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and coefficients for different patterns, and addressed the short- 
comings of simple models of intersection accidents in terms of flows. 
The need for detailed models by pattern is presumably greater for 
signalized intersections than it is for stop-controlled minor roads with 
low traffic.

Control Type

The safety effect of converting to all-way stop was contradictory in two 
papers (Lovell and Hauer, 1986; Persaud, 1986). Lovell and Hauer 
affirmed the benefit of converting to four-way stop, while Persaud 
rejected its effectiveness. King and Goldblatt (1975) concluded that 
signalization reduces right-angle accidents but increases rear-end 
accidents, with no significant change in total accident-related disutility. 

Sight Distance and Alignment

Three reports relate intersection sight distance (ISD) to accidents 
(David and Norman 1975; Wu, 1973; Moore and Humphreys, 1975). 
David and Norman reported that an increase in sight radius reduces 
the number of accidents. Sight radius was defined to be an average of 
all intersection sight distances at 50 feet from the intersection. Thus 
sight radius is not equivalent to the ISD defined in the AASHTO 
Design Manual, the so-called "Green Book." Wu cited the safety effect 
of clear vision and poor vision at both rural and urban signalized 
intersections. Clear and poor vision are qualitative descriptors as 
opposed to precise quantitative measures of ISD. Bared and Lum 
(1992), in a presentation on the safety effectiveness of intersection 
design elements, concluded that sight distance and other alignment 
variables are important at intersections. Among others, Urbanik et al. 
(1989) affirmed the significance of sight distance on crest vertical 
curves at intersections. Intersection sight distance will be indirectly 
considered in this study by surrogate variables: horizontal curvature, 
vertical curvature, and Roadside Hazard Rating.
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2. Literature Review 

Artificial Neural Networks 

Artificial neural network applications have recently received considerable 
attention. The methodology of modeling, or estimation, is somewhat 
comparable to statistical modeling (Smith, 1993). Neural networks should 
not, however, be heralded as a substitute for statistical modeling, but 
rather as a complementary effort (without the restrictive assumption of a 
particular statistical model) or an alternative approach to fitting non-linear 
data. 

A typical neural network (shown in Figure 2) is composed of input units 
X1, X2, ... corresponding to independent variables (in our case, highway 
or intersection variables), a hidden layer known as the first layer, and an 
output layer (second layer) whose output units Y1, ... correspond to 
dependent variables (expected number of accidents per time period).

In between are hidden units H1, H2, ... corresponding to intermediate 

variables. These interact by means of weight matrices W(1) and W(2) with 
adjustable weights. The values of the hidden units are obtained from the 
formulas:
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One multiplies the first weight matrix by the input vector X = (X1, X2, ...), 
and then applies an activation function f to each component of the result. 
Likewise the values of the output units are obtained by applying the 
second weight matrix to the vector H = (H1, H2, ...) of hidden unit values, 
and then applying the activation function f to each component of the 
result. In this way one obtains an output vector Y= (Y1, Y2, ...).

The activation function f is typically of sigmoid form and may be a logistic 
function, hyperbolic tangent, etc.:

Usually the activation function is taken to be the same for all components 
but it need not be.

Values of W(1) and W(2) are assumed at the initial iteration. The accuracy 
of the estimated output is improved by an iterative learning process in 
which the outputs for various input vectors are compared with targets 
(observed frequency of accidents) and an average error term E is 
computed:

Here 

N = Number of highway sites or observations

Y(n) = Estimated number of accidents at site n for n = 1, 2, ..., N

T(n) = Observed number of accidents at site n for n = 1, 2, ..., N.
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After one pass through all observations (the training set), a gradient 
descent method may be used to calculate improved values of the weights 
W(1) and W(2), values that make E smaller. After reevaluation of the 
weights with the gradient descent method, successive passes can be 
made and the weights further adjusted until the error is reduced to a 
satisfactory level. The computation thus has two modes, the mapping 
mode, in which outputs are computed, and the learning mode, in which 
weights are adjusted to minimize E. Although the method may not 
necessarily converge to a global minimum, it generally gets quite close to 
one if an adequate number of hidden units are employed. 

The most delicate part of neural network modeling is generalization, the 
development of a model that is reliable in predicting future accidents. 
Overfitting (i.e., getting weights for which E is so small on the training set 
that even random variation is accounted for) can be minimized by having 
two validation samples in addition to the training sample. According to 
Smith (1993), the data set should be divided into three subsets: 40% for 
training, 30% to prevent overfitting, and 30% for testing. Training on the 
training set should stop at the epoch when the error E computed on the 
second set begins to rise (the second set is not used for training but 
merely to decide when to stop training). Then the third set is used to see 
how well the model performs. The cross-validation helps to optimize the 
fit in three ways: by limiting/optimizing the number of hidden units, by 
limiting/optimizing the number of iterations, and by inhibiting network use 
of large weights. 

The major advantages and disadvantages of neural networks in modeling 
applications are as follows:

Advantages

· There is no need to assume an underlying data distribution such as 
usually is done in statistical modeling. 

· Neural networks are applicable to multivariate non-linear problems.

· The transformations of the variables are automated in the computational 
process.

Disadvantages

· Minimizing overfitting requires a great deal of computational effort.

· The individual relations between the input variables and the output 
variables are not developed by engineering judgment so that the model 
tends to be a black box or input/output table without analytical basis.
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· The sample size has to be large.

The disadvantages appear to outweigh the advantages, particularly in 
view of the black box effect.
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3. Data Collection

The Populations and Sample Selection

The States for which data were obtained are Minnesota and Washington. Both 
of these States are included in the Highway Safety Information System (HSIS), 
and both States have relatively well-maintained data bases. In addition, data 
for recent years (1985 through 1994 for Minnesota and 1993 through 1995 for 
Washington) were available, or became available in the course of the study. 
For Washington a shortcoming was the unavailability of a separate intersection 
file. 

The populations from which the samples were drawn were rural segments of 
two-lane roads and rural three- and four-legged intersections of two-lane roads 
stop-controlled on the minor road. The roads had to be present in State and 
HSIS databases, and thus the segment road or major road was always a State 
highway. Roads with unusually low traffic were not included, and other 
reasonable constraints were imposed. Samples were picked from the 
population in part randomly and in part systematically. Since the purpose of 
this study was not to summarize the population of each State, but rather to 
obtain insight into the effects of different variables, observations were selected 
with some view to achieving variety in traffic volumes, roadway width, and 
terrain. 

Minnesota Segments

The sample of Minnesota segments was prepared as follows:

i) HSIS files of homogeneous segments of State roads for two time periods, 
1985-1987 and 1988-1989, were obtained and the constraints below were 
imposed.

●     rural two-lane, two-way, paved road
●     17 feet < surface width 24 feet
●     left and right shoulder width differing by 2 feet or less
●     average of left and right shoulder width 12 feet
●     segment length > 0.1 mile
●     segment present in both time periods with characteristics unchanged
●     5-year average daily traffic (ADT) > 5 vehicles
●     5-year average daily commercial traffic > 5 vehicles

ii) The resulting population consisted of 3,308 segments. Some statistics, 
derived from HSIS data, on this population are presented in Appendix 1. 
Median values of ADT, segment length, surface width, and shoulder width 
were obtained for the population and used to classify segments by high versus 
low ADT, high versus low segment length, high versus low surface width, and 
high versus low shoulder width. The population was then divided into 16 bins 
on the basis of whether each of the four variables was high or low. The 
resulting bins varied in size from 13 segments to 679 segments. Thirteen 
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segments were randomly selected from each bin, along with a hundred other 
segments randomly selected from the remaining population as a whole, and 
these formed a pilot study sample of 308 segments.

iii) The pilot study sample was eventually enlarged by the addition of 416 more 
segments so that all members of the six smallest bins were included in the 
sample. The sizes of these six bins ranged from 13 segments to 45 segments. 
The selection method for the final sample was equivalent to exhaustion of the 
first six bins, a random choice of 45 segments from each of the remaining bins, 
and a random choice of a hundred additional segments from the remaining 
bins without regard to bin membership. The resulting sample consisted of 724 
segments.

iv) For each of these segments an attempt was made to obtain photolog data 
(signage, Roadside Hazard Rating, driveways, intersections, speed limits) at 
FHWA and in Minnesota and to extract vertical and horizontal alignments 
along the segments as they were in the years 1985-1989 from construction 
plans in Minnesota. After much investigation and double-checking, relatively 
complete data could be acquired for 619 segments. These constituted the final 
sample. The remaining segments were removed because photologs or 
construction plans were unavailable or were seriously incomplete, because 
significant regrading or realignment had been done in the time period 1985-
1989, or in a few cases because photologs revealed that the segments were 
not two-lane roads. One segment was removed because the ADT was 22,710 
vehicles per day, substantially higher than that of all others roads in the study.

Minnesota Intersections

The samples of Minnesota intersections were prepared as follows:

i) HSIS files of intersections with main line a State road for two time periods, 
1985-1987 and 1988-1989, were obtained and the constraints below were 
imposed.

●     rural environment
●     main line a U.S. trunk highway or Minnesota trunk highway
●     

main line and cross-street two-lane, two-way road
●     stop sign on minor road, thru on main line 
●     17 feet < surface width 24 feet
●     

intersection present in both time periods with characteristics unchanged
●     number of legs three or four
●     main line has two legs
●     main line does not change direction at intersection by more than 45
●     

traffic data on major and minor roads obtained in 1982 or later 
●     three-legged intersections of types tee or wye
●     four-legged intersections of types right angle or skewed crossing 
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ii) The resulting populations consisted of 949 three-legged intersections and 
1,156 four-legged intersections. See Appendix 1 for statistics concerning these 
two populations. Median values of main line ADT and minor road ADT were 
obtained for each population and used to classify intersections by high versus 
low major road ADT, and high versus low minor road ADT. Each population 
was then divided into four bins numbered 00 to 11, based on whether each of 
the two variables was high or low. 1 means high, 0 low, and the first number 
refers to major road ADT, the second to minor road ADT. The resulting bins 
had the sizes shown below.

iii) Initially pilot study samples of 25 intersections were chosen randomly from 
within each of the eight bins. Examination of photologs showed that 
intersections in three of the bins failed to satisfy the constraints in 
disproportionately large numbers. So 10, 5, and 7 extra intersections were 
chosen randomly from the bins 3-legged 10, 3-legged 11, and 4-legged 10, 
respectively. Thereafter in the course of ensuing months an additional 100, 
then 160, and then 200 intersections were chosen randomly from the 3-legged 
bins in equal numbers; while an additional 100, and then 160 were chosen 
likewise from the 4-legged bins. The total sample of 3-legged intersections 
consisted of 100 + 10 + 5 + 100 + 160 + 200 = 575 intersections. The total 
sample of 4-legged intersections consisted of 100 + 7 + 100 + 160 = 367 
intersections.

iv) For each of these intersections an attempt was made to obtain photolog 
data (signage, Roadside Hazard Rating, driveways, turning lane/bypass lane 
data, speed limits) at FHWA and in Minnesota, and to extract vertical and 
horizontal alignments for curves any portion of which were within 764 feet of 
an intersection along the main line from construction plans in Minnesota. The 
information was for the intersections as they were in the years 1985-1989. 
Relatively complete data could be acquired for 389 three-legged intersections 
and 327 four-legged intersections. The remainder were eliminated because 
photologs showed that they did not satisfy the constraints, or plans were 
unavailable for them, or the intersections had significant construction during 
1985-1989. 

Washington Segments

The sample of Washington State segments was prepared as follows:
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i) HSIS files of homogeneous segments of State roads for the years 1993 and 
1994 were obtained and the constraints below were imposed:

●     rural two-lane, two-way, paved road
●     17 feet < surface width 24 feet
●     left and right shoulder width differing by 2 feet or less
●     average of left and right shoulder width 12 feet
●     segment length > 0.1 mile
●     segment present in both time periods with characteristics unchanged
●     2-year average daily traffic (ADT) > 5 vehicles
●     no vertical curves of zero length with change of grade of 1% or more
●     no horizontal curves of zero length with angular change of 1  or more

Unlike Minnesota, horizontal and vertical alignment data were available for 
Washington State in separate HSIS Horizontal and Vertical Curve files.

ii) The resulting population consisted of 6,144 segments. Median values of 
ADT, segment length, surface width, and shoulder width were obtained for this 
population. The median segment length was 0.36 miles (considerably lower 
than Minnesota's median of 0.5695 miles). The segments were classified by 
high versus low ADT, high versus low segment length, high versus low surface 
width, and high versus low shoulder width, with the medians as the division 
points except for segment length for which 0.600 miles was used. The 
population was then divided into 16 bins on the basis of whether each of the 
four variables was high or low. The resulting bins varied in size from 87 
segments to 913 segments. 

iii) 61 segments were picked randomly from each of the 16 bins, for a total of 
976 segments. An additional 25 segments were picked for which the TERRAIN 
variable had the value "mountainous." 

iv) On the basis of videotape reviews, further examination of alignment 
variables, and an enlargement of the time frame to include the year 1995, the 
sample was reduced to a total of 712 segments. Some segments were 
eliminated because the videotapes showed that they did not meet the 
constraints (e.g., the environment was urban or the number of lanes had 
changed) or the alignment data contained anomalies such as a significant 
difference between the outgoing grade of one vertical curve and the incoming 
grade of the next. Others were omitted because in Washington State, unlike 
Minnesota, most segments begin and end with an intersection. After 250 feet 
were removed from one or both ends of segments in such cases, it was found 
that a significant number of segments no longer met the requirement that their 
length was greater than 0.1 miles. In addition, 1995 HSIS Washington State 
files became available at a relatively late stage of the study and the sample 
was further trimmed when the requirement was imposed that the segment also 
be present in the 1995 files with chief characteristics unchanged. 

Washington Intersections

There are no HSIS intersection files for Washington State nor does the State 
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maintain separate intersection files. Washington State videotapes were, 
however, accompanied by logs indicating the locations and names of all cross-
streets along each State route. Since ADT data for county and local roads 
were not readily available, it was decided to note intersections of State roads 
found in the videotapes and satisfying the same constraints as the Minnesota 
data. This was not done for all Washington State videotapes, but only for ones 
being reviewed to extract data for the segment sample. A total of 431 
intersections were reviewed by this method. 

The Washington State Department of Transportation provided a log of 
intersections for which it had ADT data on the cross-streets. The intersections 
in this log were intersections on State roads together with intersections in the 
Highway Performance Monitoring System. In addition, by inspecting HSIS road 
files, the Project Team was able to match major and minor State roads in 
some other cases to get ADT data. However, for some of the intersections no 
reliable estimate of cross-street ADT could be obtained. In addition, inspection 
of videotapes showed that some of the intersections failed to satisfy the 
intersection constraints imposed in Minnesota (e.g., they were not rural). When 
traffic, alignment, and roadway data were assembled, and incomplete 
observations removed, the resulting data sets, "opportunity" samples rather 
than a random samples, consisted of 181 three-legged intersections and 90 
four-legged intersections.
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3. Data Collection

How Data were Collected 

Data were extracted from HSIS data files for Minnesota and Washington, 
from photologs for Minnesota and videotapes for Washington, and from construction 
plans at the Minnesota Department of Transportation. In addition, weather data for 
the state of Minnesota were acquired from the Midwest Climate Center. A number of 
small-scale investigations were also done that made use of other data provided 
by personnel at the respective Departments of Transportation. 

HSIS data are stored in SAS databases. The needed data elements were 
extracted and assembled into SAS data sets representing the study populations with 
identifiers for each population bin. Random numbers were used to prepare SAS 
data sets representing the study samples (with the exception of the 
Washington intersections). Other sample data were recorded manually on 
specially prepared data sheets from photologs, videotapes, and plans. These 
were entered into SAS data sets that were merged with the HSIS data to obtain the 
full sample data sets.

Numerous data checks were done at each stage. Second and sometimes 
third viewings of photologs, videotapes, and plans occurred, as well as 
consistency checks on SAS data base entries and some checks on the HSIS 
files themselves. Variables such as Roadside Hazard Rating were determined by 
two and sometimes three different individuals to minimize subjectivity.

HSIS Data

Accident data, traffic data, vertical and horizontal alignment data for Washington 
State, and other geometric data were extracted from HSIS files. These data were used 
in part to constrain the populations so that segments were on two-lane paved 
rural roads where segment lengths, surface widths, shoulder widths, ADT, 
and commercial ADT fell within prescribed ranges, while intersection geometries 
were three-legged or four-legged with all legs two-lane and two-way rural roads. 

The data elements for the samples are those shown in Table 1. In the case of 
Washington State vertical and horizontal alignment data were obtained from HSIS files, 
but for Minnesota they were obtained from construction plans.

Minnesota Photologs

Photologs for the State of Minnesota were examined at FHWA’s Turner-Fairbank 
Highway Research Center. In some cases photologs were not available at FHWA, but 
were found and examined at the Minnesota Department of Transportation (MNDOT) 
in Saint Paul, Minnesota. The photologs were used to verify HSIS data (e.g., 
rural environment, two lanes, stop sign on minor road), to determine Roadside 
Hazard Rating, to count driveways and intersections within a segment, to determine 
channelization at intersections, and to note posted regulatory and advisory 
speeds when seen.

Minnesota Construction Plans
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Construction plans obtained in the Plan Office of MNDOT provided horizontal and 
vertical alignment data as well as the angle between legs at intersections. Location of 
plans was an arduous task, requiring that true beginning and ending mileposts of a 
segment or reference point of an intersection be matched up to the correct 
stations, that a control section be determined from a separate book, that a card file of 
projects by segment be consulted to discover any projects and project numbers, 
and then that the corresponding project plan sheets be recovered and verified. 
Plans were then copied and were examined in detail at a later time. 

Washington Videotapes

Videotapes for the State of Washington’s roadways were purchased from 
the Washington Department of Transportation and were reviewed at PRAGMATICS. 
Like the Minnesota photologs, the videotapes were used to verify the correctness of the 
HSIS data and to obtain Roadside Hazard Rating, speeds, numbers of driveways, and 
channelization. In addition, they were used to estimate the angle between legs at 
an intersection. 

Weather Data

Weather data were acquired for Minnesota intersections. The Midwestern 
Climate Center (MCC) in Illinois provided a listing of the nine Climate Districts in 
Minnesota, each of which is relatively homogeneous in its weather conditions. Weather 
data for each District are available based on averages of reports from local 
weather stations, many of which are run by volunteers. In Northern Minnesota the 
stations are sparser than elsewhere in the State. The percentages of dry, wet, 
snow/slush, and ice/pack snow days, respectively, for each year from 1985 to 1989 
by Climate District were provided at a nominal charge. PRAGMATICS, Inc. staff 
attached these to segments and intersections falling within the corresponding 
Climate District. 

Modeling of the Minnesota data did not show the weather to be significant, possibly 
because the weather variable could not be localized to a level below the 
Climate District. Consequently, weather data were not acquired for Washington State.

Miscellaneous Investigations

Aerial photographs were consulted in both Minnesota and Washington for possible use 
in estimating horizontal alignment, intersection angles, and intersection channelization. 
The Photogrammetric Unit of MNDOT provided contact prints for 12 out of 
20 requested intersections at a scale of 1" = 100'; the other eight were not available. 
Washington State provided a few sample prints of aerial photographs at a scale of 1" 
= 2,000'. Curvatures and angles could be readily made out from the 
Washington photos, but channelization at intersections was not readily ascertainable. 
Since the information could be obtained in other ways, not all intersections and 
segments were available in aerial photographs, and the cost was high in Washington 
State, it was decided not to acquire such photos for the full samples. 

Minnesota has nine Highway Districts. Each Highway District Office was queried 
for information about a sample of intersections (channelization installation dates, age of 
stop signs on minor roads). Age of stop signs is thought to be related to reflectivity 
and visibility. All nine Districts responded and provided some information, including 
sketches of the intersections. In all cases the channelization (turning and/
or acceleration lanes) was installed prior to 1985, but exact installation dates were not 
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available. Likewise the dates of stop sign installations were not generally available, but 
the District Offices indicated that stop signs were replaced on a 10-year schedule.

Queries were also made in Minnesota about traffic data and commercial traffic data, as 
well as the availability of traffic data on county roads, and in both Minnesota 
and Washington about underreporting of accidents. Results are reported below. 

 

TABLE 1. Variables collected in the study

   

MINNESOTA SEGMENTS 

   

Variable 

Meaning Units Source 

 

 

 

Identifiers 

m_sysnbr Route number    

HSIS 

true_beg true beg. Milepost miles HSIS 

true_end true end milepost miles HSIS 

beg_sta beg. Station hundreds 
of feet 

Plans 

end_sta end station hundreds 
of feet 

Plans 

Traffic ADT Average daily traffic vehicles 
per day 

HSIS 

com_avg Average daily heavy 
vehicle traffic 

vehicles 
per day 

HSIS 

 

 

 

 

Miscel-

LW lane width feet HSIS 

SHW Shoulder width feet HSIS 

RHR Roadside Hazard 
Rating 

1, 2, 3, 4, 
5, 6, 7 

Photologs 
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laneous 
nodrwy,

noint 

Number of driveways, 
number of 
intersections 

   

Photologs 

shl_typ Shoulder type    

HSIS 

light yes or no if lighting/no 
lighting 

   

Photologs 

terrain flat, rolling, or 
mountainous 

   

Photologs 

Weather dd, wd, 
ss, ips 

Number of dry, wet, 
snow/slush, ice
\packsnow days 

days per 
year 

MCC 

 

 

Horizontal 
alignment 

pc{i} beg. Station of curve 
no. I 

hundreds 
of feet 

Plans 

pt{i} end station of curve 
no. i 

hundreds 
of feet 

Plans 

DEG{i} degree of curve, curve 
no. I 

degrees 
per 100 ft 

Plans 

dir{i} Direction, left or right, 
curve no. i 

   

Plans 

 

Vertical 
alignment 

b{i} beg. Station of curve 
no. I 

hundreds 
of feet 

Plans 

e{i} end station of curve 
no. I 

hundreds 
of feet 

Plans 

g{i} grade no. i (prior to 
curve no. i) 

percent Plans 

Variables explicitly used in models are in capital letters; 1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 1. Variables collected in the study (continued)
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MINNESOTA SEGMENTS, continued 

 Variable  

Meaning 

Units Source 

 

 

Speed 

advspd advisory speed miles per 
hour 

Photologs 

regspd Regulatory speed miles per 
hour 

Photologs 

speed posted speed (accident 
sites only) 

miles per 
hour 

HSIS 

 

 

 

 

 

 

Accident 
data 

TOTACC total number of non-
intersection accidents in 
1985-9, 1990-3 

   

HSIS 

fatal,

injury, 
nonincap,

possinj, 
injunk, 
propdam 

no. of fatal, injury, 

non-incapacitating, 
possible injury, injury 
unknown, and property 
damage only non-
intersection accidents 

   

HSIS 

rearend, 
sswipe, 
leftturn, 
rorleft, 
rtangle, 
riteturn, 
rorright, 
headon, 
sswipopp, 
other, 
unknown 

no. of rearend, sideswipe, 
left turn, run-off-road left, 
right angle, right turn, run-
off-road right, headon, 
sideswipe opposite, 
other, and type unknown 
accidents 

   

HSIS 

TABLE 1. Variables collected in the study (continued)

   

MINNESOTA THREE-LEGGED AND FOUR-LEGGED 
INTERSECTIONS 
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Variable Meaning Units Source 

 

 

Identifiers 

int_synb Route number    

HSIS 

refpnt nominal milepost of 
intersection center 

miles HSIS 

true_sta station of intersection 
center 

hundreds 
of feet 

Plans 

 

Traffic 

int1 average daily traffic on 
major road 

vehicles 
per day 

HSIS 

int2 average daily traffic on 
minor road 

vehicles 
per day 

HSIS 

 

 

 

Miscel-

Laneous 

RHRI Roadside Hazard Rating 
within ±250 ft on major road 

1, 2, 3, 4, 
5, 6, 7 

Photologs 

ND number of driveways within 
±250 ft on major road 

   

Photologs 

light yes or no if lighting or no 
lighting 

   

Photologs 

terrain flat, rolling, or mountainous    

Photologs 

Weather dd, wd, 
ss, ips 

number of dry, wet, snow/
slush, ice\packsnow days 

days per 
year 

MCC 

 

 

Horizontal

Alignment 
on major 
road 

pc{i} beg. station of curve no. i (if 
any portion of curve is 
within ±764 ft of 
intersection center along 
major road) 

hundreds 
of feet 

Plans 

pt{i} end station, curve no. i hundreds 
of feet 

Plans 

DEG{i} degree of curve, curve no. I degrees 
per 
hundred 
feet 

Plans 
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dir{i} direction, left or right, curve 
no. I 

   

Plans 

 

 

Vertical 
alignment 
on major 

Road 

b{i} beg. station of curve no. i (if 
any portion of curve is 
within ±764 ft of 
intersection center along 
major road) 

hundreds 
of feet 

Plans 

e{i} end station of curve no. I hundreds 
of feet 

Plans 

g{i} grade no. i (prior to curve 
no. i) 

percent Plans 

TABLE 1. Variables collected in the study (continued)
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TABLE 1. Variables collected in the study (continued)

 

  

 

MINNESOTA THREE-LEGGED INTERSECTIONS ONLY 

Variable Meaning Units Source 

 

Angle 

angle angle between increasing 
direction of major road and 
third leg 

degrees Plans 

dir_ang direction of third leg (left or 
right ) from increasing dir. of 
major road 

   

Plans 

 

 

 

 

Channel-
ization 

tlml yes or no whether a right turn 
lane does or does not exist on 
major road 

   

Photologs 

tlcs yes or no whether a right turn/
acceleration lane does or does 
not exist on the minor road 

   

Photologs 

bypass yes or no whether a bypass 
lane does or does not exist on 
the major road (opposite the 
minor road) 

   

Photologs 

 

  

 

MINNESOTA FOUR-LEGGED INTERSECTIONS ONLY 

 

 

Angle 

l_angle angle between increasing 
direction of major road and left 
leg of minor 

degrees Plans 

r_angle angle between increasing 
direction of major road and 
right leg of minor 

degrees Plans 

 

 

 

tlml1 yes or no whether a right turn 
lane does or does not exist 
along increasing direction of 
major road 

   

Photologs 
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Channel-
ization 

tlml2 yes or no whether a right turn 
lane does or does not exist 
along decreasing direction of 
major road 

   

Photologs 

l_tlcs yes or no whether a right turn/
acceleration lane does or does 
not exist on the left leg of the 
minor road 

   

Photologs 

r_tlcs yes or no whether a right turn/
acceleration lane does or does 
not exist on the right leg of the 
minor road 

   

Photologs 

TABLE 1. Variables collected in the study (continued)

 

  

 

WASHINGTON SEGMENTS 

   

Variable 

 

Meaning 

Units Source 

 

 

Identifiers 

rte_nbr Route number    

HSIS 

begmp beg. Milepost miles HSIS 

endmp end milepost miles HSIS 

Traffic ADT average daily traffic vehicles 
per day 

HSIS 

com_avg average daily heavy 
vehicle traffic 

vehicles 
per day 

HSIS 

 

 

 

 

LW lane width feet HSIS 

SHW shoulder width feet HSIS 

RHR Roadside Hazard 
Rating 

1, 2, 3, 4, 
5, 6, 7 

Photologs 
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Miscel-

Laneous 

nodrwy number of driveways    

Photologs 

noint number of intersections    

Photologs 

light yes or no if lighting or 
no lighting 

   

Photologs 

terrain flat, rolling, or 
mountainous 

   

Photologs 

 

 

Horizontal 
alignment 

pc{i} beg. milepost of curve 
no. I 

miles HSIS 

pt{i} end milepost of curve 
no. i 

miles HSIS 

rad{i} radius of curve, curve 
no. I 

feet HSIS 

dir{i} direction, left or right, 
curve no. I 

   

HSIS 

 

Vertical 
alignment 

b{i} beg. milepost of curve 
no. I 

miles HSIS 

e{i} end milepost of curve 
no. I 

miles HSIS 

g{i} incoming grade no. I percent HSIS 

h{i} outgoing grade no. I percent HSIS 

TABLE 1. Variables collected in the study (continued)

 

  

 

WASHINGTON SEGMENTS, continued 
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Variable 

 

Meaning 

Units Source 

 

 

 

Speed 

advspd advisory speed miles per 
hour 

Photologs 

regspd regulatory speed miles per 
hour 

Photologs 

spd_limt posted speed miles per 
hour 

HSIS 

hspd{i} speed on horizontal 
curve no. I 

miles per 
hour 

HSIS 

vspd{i} speed on vertical curve 
no. I 

miles per 
hour 

HSIS 

 

 

 

 

Accident 
data 

TOTACC total number of non-
intersection accidents in 
1993-5 

   

HSIS 

fatal,

injury, 
nonincap,

possinj, 
injunk, 
propdam 

no. of fatal, injury, 

non-incapacitating, 
possible injury, injury 
unknown, and property 
damage only non-
intersection accidents 

   

HSIS 

RORACC  

number of run-off-road 
accidents 

   

HSIS 

TABLE 1. Variables collected in the study (continued)

 

  

 

WASHINGTON THREE-LEGGED AND FOUR-LEGGED 
INTERSECTIONS 

Variable Meaning Units Source 
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Identifiers 

rte_nbr Route number    

HSIS 

arm accumulated milepost of 
intersection center 

miles HSIS 

 

Traffic 

ADT1 average daily traffic on 
major road 

vehicles 
per day 

HSIS 

ADT2 average daily traffic on 
minor road 

vehicles 
per day 

HSIS 

 

 

 

Miscel-
laneous 

RHRI Roadside Hazard Rating 
within ±250 ft on major road 

1, 2, 3, 4, 
5, 6, 7 

Photologs 

ND number of driveways within 
±250 ft on major road 

   

Photologs 

light yes or no if lighting or no 
lighting 

   

Photologs 

terrain flat, rolling, or mountainous    

Photologs 

 

 

Horizontal

Alignment 
on major 
road 

pc{i} beg. milepost of horizontal 
curve no. i (if any portion of 
curve is within ±764 ft of 
intersection center along 
major road) 

miles HSIS 

pt{i} end milepost, curve no. i miles HSIS 

rad{i} radius of curve, curve no. I feet HSIS 

dir{i} direction, left or right, curve 
no. I 

   

HSIS 

 

 

Vertical 
alignment 
on major 

b{i} beg. milepost of vertical 
curve no. i (if any portion of 
curve is within ±764 ft of 
intersection center along 
major road) 

miles HSIS 
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Road e{i} end milepost of vertical 
curve no. i 

miles HSIS 

g{i} grade no. I percent HSIS 

TABLE 1. Variables collected in the study (continued)

 

  

 

WASHINGTON THREE-LEGGED AND FOUR-LEGGED 
INTERSECTION, continued 

Variable  

Meaning 

Units Source 

 

Speed 
on 
major 
road 

advspd advisory speed miles per 
hour 

Photologs 

regspd regulatory speed miles per 
hour 

Photologs 

ap_spd posted approach speed miles per 
hour 

HSIS 

 

 

 

 

 

 

 

 

 

 

Accident 
data 

TOTACC number of intersection 
accidents or intersection-
related accidents 
occurring within ±250 feet 
of intersection on major 
road during 1985-9, 1990-
3 

   

HSIS 

fatal, 
injury, 
nonincap,

possinj, 
injunk, 
propdam 

no. of fatal, injury, 

non-incapacitating, 
possible injury, injury 
unknown, and property 
damage only accidents 

   

HSIS 
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rearend, 
sswipe, 
leftturn, 
rorleft, 
rtangle, 
riteturn, 
rorright, 
headon, 
sswipopp, 
other, 
unknown 

no. of rearend, sideswipe, 
left turn, run-off-road left, 
right angle, right turn, run-
off-road right, headon, 
sideswipe opposite, other, 
and type unknown 
accidents 

   

HSIS 

RORACC number of run-off-road 
accidents 

   

HSIS 

TABLE 1. Variables collected in the study (continued)

 

  

 

WASHINGTON THREE-LEGGED INTERSECTIONS ONLY 

Variable Meaning Units Source 

 

Angle 

angle angle between increasing 
direction of major road and 
third leg 

degrees Photologs 

dir_ang direction of third leg (left or 
right ) from increasing dir. of 
major road 

   

Photologs 

 

 

 

 

Channel-
ization 

tlml yes or no whether a right 
turn lane does or does not 
exist on major road 

   

Photologs 

tlcs yes or no whether a right 
turn/acceleration lane does 
or does not exist on the 
minor road 

   

Photologs 

bypass yes or no whether a bypass 
lane does or does not exist 
on the major road (opposite 
the minor road) 

   

Photologs 
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WASHINGTON FOUR-LEGGED INTERSECTIONS ONLY 

 

 

Angle 

l_angle angle between increasing 
direction of major road and 
left leg of minor 

degrees Photologs 

r_angle angle between increasing 
direction of major road and 
right leg of minor 

degrees Photologs 

 

 

 

 

Channel-
ization 

tlml1 yes or no whether a right 
turn lane does or does not 
exist along increasing 
direction of major road 

   

Photologs 

tlml2 yes or no whether a right 
turn lane does or does not 
exist along decreasing 
direction of major road 

   

Photologs 

l_tlcs yes or no whether a right 
turn/acceleration lane does 
or does not exist on the left 
leg of the minor road 

   

Photologs 

r_tlcs yes or no whether a right 
turn/acceleration lane does 
or does not exist on the right 
leg of the minor road 

   

Photologs 
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3. Data Collection

Limitations on Data Quality

As noted, numerous checks were performed on the data. Examples of 
such checks were repeated reviews of plans and photologs, 
comparisons of values of multiple variables for consistency (for 
example, radius of curvature versus degree of curve), use of computer 
programs to flag unusually large values of variables, and to confirm 
that ordering was preserved (beginning milepost comes earlier than 
end milepost for each curve). However, the accuracy of the data was 
limited by a number of inherent factors discussed below.

Accident Data

Accident data were obtained from HSIS files. 

Segment accidents were required to be "non-intersection" accidents, i.
e., accidents that did not occur at intersections and were not 
intersection related. Intersection accidents were accidents at 
intersections in the database and all intersection-related accidents 
occurring within ± 250 feet of an intersection in the database. In the 
Minnesota data, a variable called "INTERSE" was used in the segment 
database to exclude accidents with the values "intersection" or 
"intersection-related" and in the intersection databases to include 
accidents with precisely these values. In Washington a variable called 
"LOC_TYPE" was used in the segment database to eliminate all 
accidents coded as: at intersection and related, intersection related but 
not at intersection, at intersection but not related, driveway within 
intersection. Likewise, "LOC_TYPE" was used to retain precisely these 
accidents when they were within 250 feet of the intersection under 
study. Accidents occurring on the minor road at an intersection 
approach were typically coded to the major road at the intersection.

Severities were also recorded for each accident, while accident types 
(run-off-road, etc.) were recorded for Minnesota. In the case of 
Washington, accident types were not recorded since the accident file 
has elaborate subcategories that differ significantly from those of 
Minnesota. An exception was made in the case of run-off-road 
accidents. A Washington State variable called "V1EVENT2" in the 
HSIS file was used to estimate whether an accident was of run-off-
road type: If the accident was a single vehicle accident in which the 
vehicle struck an appurtenance or other object, overturned, ran into a 
ditch or river or over an embankment (these are categories in the file), 
it was taken to be a run-off-road accident. 
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Underreporting of accidents was a matter of some concern. In both 
States during the time periods under consideration, accidents involving 
either injuries or property damage of $500 or more had to be reported. 
In Minnesota the reporting threshold rose to $1,000 as of August 1, 
1994. The amount of any underreporting is a matter of speculation 
(one source in Minnesota thought there might be one minor 
unreported accident for each reported one because accident-prone 
drivers wish to avoid both penalties for intoxication and insurance 
premium increases).

The reliability of the reported accident characteristics depends on the 
acumen of the reporting officer or official and witnesses as well as on 
the comparability of variables between the two States.

Traffic Data

The HSIS traffic variables in Table 1, ADT and com_avg, derive from 
Minnesota and Washington traffic count data.

ADT data for the Minnesota segments appear to have been reliably 
estimated on a timely basis. Two multi-year data sets, 1985-1987 and 
1988-1989, and four annual data sets, 1990, 1991, 1992, and 1993, 
were available for this study. The traffic data in these sets seem to 
have been based on measurements and calculations, e.g., 
interpolation and/or extrapolation both along roads and in time. The 
HSIS Guidebook dated October 1993 notes that traffic data on major 
roads are collected on a two-year cycle, and on minor rural roads on a 
four-year cycle, and that growth factors are applied for the years in 
which measurements are not made.

According to MNDOT manual counts, including detailed classification 
of vehicle types, are done at about a thousand sites around the State. 
In a manual count a person stands at the roadside and counts and 
classifies every vehicle that passes over a 16-hour period (from 6 AM 
to 10 PM on a weekday). One hundred of the sites, the major ones, 
are counted every 2 years; and another 900 every 6 years. Every 2 
years estimates are produced of ADT and commercial ADT throughout 
the State. Count locations do not exist on every segment but are 
averaged from those of adjacent segments along relatively 
homogeneous roads. A count might be done once in, say, 6 miles in 
some places. 

The vehicle types that are summarized under the variable com_avg in 
Table 1 are heavy vehicles, defined as those with two or more axles 
and six or more tires. On roads with low traffic, about 25% of the 
heavy vehicle traffic consists of five-axle semis, usually with 18 
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wheels; on roads with high traffic about 75% is five-axle semis. A twin 
trailer (cab + tractor + trailer + another trailer) with perhaps five or six 
axles, along with most three-axled trucks without tractors, would be 
counted as a heavy vehicle but not a semi. The variable com_avg is 
thought not to be as accurate as ADT. 

Minnesota intersection traffic data are somewhat less reliable than 
segment traffic data. The intersection files from Minnesota give traffic 
counts for both the major and minor roads, along with the year in 
which these data were acquired. Not only are the years quite variable 
from intersection to intersection, varying from 1976 to 1992, but very 
few of them appear to have been updated between the 1985-1989 
time period files and the 1990-1993 time period files. Traffic counts 
had been made only once in the years from 1987 to 1993 and annual 
files just repeated the value of an earlier year. In other cases no traffic 
counts had been made since 1986 or earlier.

In view of this unreliability, efforts were made to determine a growth 
rate factor that could be used to update traffic counts to the time 
periods of interest. MNDOT personnel reported that population growth 
rates did not relate in a simple fashion to traffic flow (so traffic counts 
on an intersection could not be updated from one year to the next by a 
population growth multiplier). Sometimes traffic counts will be higher 
when new development and construction is going on and then will 
ease off when the buildings and houses are occupied. A program was 
written to extract a growth rate by least squares from traffic data for 
segments near the intersection and thereafter use the year of 
intersection traffic count to extrapolate to an ADT for the years 1987 
and mid-1991. The Minnesota intersection traffic variables used in the 
modeling and validation below, ADT1 and ADT2, were derived from 
int1 and int2 by means of this program.

Washington State traffic data became available at a relatively late 
stage of this study but only for segments and for some intersections 
along segments. The traffic data were based on upstream traffic 
counts, but in some cases the count stations were rather far upstream, 
10 or more miles. The Project Team considered averaging a 
downstream count and an upstream count when the upstream count 
was at a significant distance, but decided against it in order to maintain 
conformity with HSIS files. The chief concern with these data, apart 
from the distance of count stations, is that routes, alternate routes, and 
each half of certain divided highways have similar labels and 
considerable programming is required to ensure that a count lies on a 
route of interest rather than a related one. According to the HSIS 
Washington Guidebook, a small number of the count stations are 
permanent and a large number of others are used for 72-hour counts 
every second or third year. The counts for com_avg are considered to 
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be less reliable than the overall counts, in part because they are based 
on fewer stations. Washington State Department of Transportation 
personnel observed that the truck counts are done on weekdays, that 
com_avg is based on this figure, and that it might be better to take the 
weekday figure and add 10% to 20% to get the overall weekly value. It 
was also noted that the percentage of truck traffic on a road can vary 
from 4% to 17% at different times of year, chiefly because of seasonal 
variation in the non-truck traffic.

Alignment Data

Horizontal and vertical alignment data came from construction plans in 
the case of Minnesota and from HSIS horizontal and vertical curve 
files in the case of Washington.

The Minnesota plans varied in age from a few years prior to 1985 to 
approximately 1920. Special effort was made to determine that these 
plans showed the latest alignment or realignment and that no 
realignment was done during the time periods under study. 
Nonetheless it is possible that some roads were realigned and that 
plans were never conveyed to the Minnesota Plan Office. The Plan 
Office plans are primarily Federal aid projects, and State and County 
aid projects sometimes do not get recorded at the State Plan Office. In 
addition to location problems (discussed below), problems sometimes 
arose because of illegibility of markings on the plan and 
inconsistencies between alternative measures (e.g., radius versus 
degree of curve, or beginning and end of curve versus length of curve) 
written on the plan. These were typically resolved by a judgment as to 
which number was most plausible. A few horizontal curves had spiral 
transitions at beginnings and/or ends. These were not recorded but a 
judgment was made as to a beginning and endpoint for a single 
idealized horizontal curve. A very small fraction, 2% or less, of vertical 
curves were represented in the plans as angle points, where the grade 
changes without a transition, typically a small change. Our initial 
understanding was that no such transitions occurred on Minnesota 
major roads and these points were edited so that a transition curve of 
50 feet was introduced. Later, visiting Minnesota engineers reported 
that angle points do occasionally occur on main roads. 

The Washington State alignment data were represented by a 
Horizontal Curve file and a Vertical Curve file. Many segments and 
intersections were eliminated from the sample because of anomalies 
in the values in these files, but the ones that remained also had minor 
anomalies. Because of rounding errors in the original Washington data 
(not enough significant digits kept) some curves appeared to overlap, 
and editing had to be done to restore plausible beginning and ending 
points for curves. In addition in some cases there were small 
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differences between the ending grade of one vertical curve and the 
beginning grade of the next. When the intervening stretch was treated 
as a straightaway during the modeling, its grade was taken to be the 
average of the two neighboring grades. A few angle points occurred 
for both horizontal and vertical curves with small grade changes or 
small angle change. Curve lengths were adjusted to 50 feet for these 
exceptional cases. 

Location Uncertainties

Minnesota data compilation was hampered by the fact that HSIS files, 
Minnesota photologs, and Minnesota construction plans use three 
different ways of measuring distance: true mileposts, nominal 
mileposts, and control stations. HSIS variables begmp and endmp and 
true_beg and true_end refer respectively to nominal beginning and 
ending mileposts and true beginning and ending distances of 
segments. Both the Minnesota photologs and the Minnesota accident 
data are keyed to nominal mileposts rather than true distances, and 
the primary usage of true_beg and true_end is to calculate segment 
length. The milepost of an accident in the accident files is nominal 
rather than true distance, and the tenths of a mile shown on Minnesota 
photologs are nominal mileposts not true distance. This was confirmed 
by MNDOT personnel and by comparison of photologs with the 
Minnesota List-Trumile-File for Trunk Highways. This latter book, a 
print-out of a file (our copy was dated September 1, 1988) obtained in 
Minnesota, had a listing of all State highways along with reference 
posts (i.e., nominal mileposts), true distances, and control stations, 
most of the entries effective as of 1977 (but with some updates as 
recent as 1983). 

Control stations, used in the construction plans, are local numbers, in 
hundreds of feet, and may be equated to nominal mileposts by use of 
the just mentioned file. Many plans contain station adjustments (places 
where a gap in the stations occurs) and converting back and forth 
between the various units is an art. This conversion is especially 
difficult for intersections. The intersection reference point, the nominal 
milepost of the intersection center, is sometimes not adequately tied to 
construction plans or to features on the photologs: station numbers of 
nearby landmarks are occasionally either wrong or absent, and 
interpolation adds a further source of error. Plans, sometimes of 
ancient vintage, do not show an intersection or expected landmark, or 
else are ambiguous (two or more intersections or landmarks shown in 
the plan are plausible candidates for the sought after one). This is 
particularly true of three-legged intersections since these are the least 
well-marked, least documented, and least significant data class.

Linking a particular intersection to its photolog and to a particular site 
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on a plan involves a comparison among four different numbers: the 
reference point for the intersection, the distance recorded on the 
photolog, the true distance recorded by the State, and the station 
number in the construction plans. Sometimes discrepancies occur 
among these numbers: the intersection may be at a slightly different 
point than expected in the photolog, or it may be several hundred feet 
away from its expected location in the plan. When the plan does not 
show an intersection in the near vicinity of the expected spot, an 
identifiable landmark must be found to verify locations and in some 
cases this is quite difficult.

For Washington State data, distances are measured in ARM's 
(accumulated route miles). The ARM is a true milepost, used in all of 
the HSIS files: roadway, traffic, accident, and alignment. Only the 
videotapes are in nominal mileposts, but a logbook permits 
unambiguous translation back and forth. Discrepancies were rare, 
perhaps because Washington Department of Transportation personnel 
had already resolved them. The only issue of concern was rounding 
errors, noted above.

A final caveat with respect to location concerns the accident data. 
MNDOT indicated that the accident data reviewers attempt to locate a 
nearby physical feature mentioned in the police report. They then 
determine the reference point for that feature and add an adjustment, 
typically a few hundred feet, to get to the accident site. The reviewers 
aim to get within 50 feet of the true accident site. They also assign a 
reliability code to their estimate.

Time Uncertainties

HSIS traffic and roadway data, the Minnesota construction plan data, 
and the photolog data are all supposed to apply to the time intervals 
under consideration. Rural areas might be expected to change more 
gradually than urban and suburban areas. However, some variables 
such as traffic data are based on averages of discrete observations 
that may not be representative. Others, including Minnesota 
intersection traffic data discussed above, may be out of date. Photolog 
years in Minnesota vary from 1987 to 1990 and in Washington from 
1993 to 1995; changes in the number of driveways, speed limits, 
channelization, etc., may have occurred before or after the photolog 
was obtained. 

For validation of the Minnesota model, 1990-1993 data were used. 
Since construction plans and photologs for the new time period were 
unavailable, some variables could not be re-measured. So it was 
assumed that these were generally unchanged.
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Miscellaneous Limitations

Data acquired from the photologs were subject to various limitations. 
Minnesota photologs in reels and CD-ROMs offered a larger visual 
field than the videotapes acquired from Washington State. On the 
other hand, the latter were accompanied by audio that indicated 
signage and roadside features and gave the numbers on sometimes 
otherwise unreadable speed limit signs. The Washington voice-over 
also provided intersecting street and route names and was 
accompanied by a written log. In both cases some effort was required 
to verify that minor roads had stop signs, to determine channelization, 
and to assess whether a driveway had been seen along the road. 
Driveways, for example, can sometimes be mistaken for footpaths. In 
addition, for Washington State the photologs were used to estimate 
angle of intersection between major and minor roads, and limited 
visibility along minor roads made this difficult.

Roadside Hazard Rating was determined from the photologs. Different 
observers would not always agree on the value of this subjective 
variable (values of two, and sometimes three, independent observers 
were averaged, and photologs were re-inspected in some cases). The 
hazard rating sometimes varied substantially along a segment. With 
regard to intersections, it was more difficult to arrive at values in the 
vicinity of Washington State intersections since the roadsides at these 
intersections tended to be less rural than their Minnesota counterparts 
(small town streets rather than country roads), and the proper rating to 
assign to a roadside business or residence was not always evident.

Weather data collected by the Midwest Climate Center, as already 
noted, were limited by the fact that they were not sufficiently local. 

The treatment of intersections along a segment was not quite 
consistent between Minnesota and Washington. In Minnesota very few 
segments began or ended at an intersection, and for the few that did 
(thought to be less than 5%) no attempt was made to remove, say, 
250 feet from the segment and shorten it by omitting the intersection 
vicinity. In Washington most of the segments began and/or ended with 
an intersection, and all such segments were shortened by removal of 
250 feet at each end where an intersection was encountered. On the 
other hand, no internal intersections were removed from the segments 
in either State. In Washington 95% of the segments contained no 
internal intersections, but in Minnesota more than half of the segments 
contained at least one intersection. This means that in Minnesota 
accidents along segments are more likely to include accidents that 
happened near intersections (although they would not be intersection-
related or at an intersection).
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It should also be noted that some desirable variables were omitted 
from the study altogether, e.g., superelevations, alignments on minor 
roads, actual speeds, and sight distances. To some extent the latter 
are represented in, or can be reconstructed from, horizontal and 
vertical alignment as well as Roadside Hazard Rating, but a direct 
unambiguous measurement is lacking. Also excluded, of course, are 
detailed information about drivers and vehicles on the road; accident 
circumstances such as time of day, week, and year; and weather at 
the time and place of an accident. To some extent demographic 
conditions such as ages of drivers and law enforcement practices are 
incorporated in the STATE variable (see below).
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3. Data Collection

Summary

Minnesota and Washington State data were constrained to lie on rural 
two-lane roads with segment length 0.1 miles or longer with both 
segments and intersections having reasonable bounds on ADT. Other 
reasonable constraints were also imposed, including relatively 
complete and consistent data for the time periods of interest. Many 
observations from the original populations were lost when these 
constraints were imposed, but good-sized samples remained. The 
Washington intersection samples, "opportunity" samples, were smaller 
than the other samples and it is not known how representative they 
are of the population of Washington State intersections.

Data collected include: accident counts, exposure and ADT, lane and 
shoulder widths, Roadside Hazard Rating, number of driveways, 
horizontal and vertical alignments, commercial traffic percentage, 
weather (in Minnesota), intersection angles and channelization, and 
speed limits. These data are often estimates based on averages and 
are subject to some uncertainties in location and time. ADTs are 
based on observations at selected sites, interpolation, and/or 
extrapolation, and are particularly crude estimates in the case of 
intersections. In view of the importance of ADT in the modeling, the 
crudity of these estimates should serve as a caution. 

Driver and vehicle characteristics were not collected, nor were such 
design variables as sight distances and minor road alignments.

Despite shortcomings in quality and completeness, the data obtained 
provide a relatively diverse and comprehensive basis for analysis and 
modeling.
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4. Analysis

New Variables

Accident Variables

Accident data for all data sets includes information on severities. So, in addition to 
the variable TOTACC for all non-intersection accidents along a segment and 
all intersection accidents within 250 feet of an intersection, a variable, 
INJACC, excluding property damage only accidents was introduced. INJACC 
counts fatal accidents and the various types of injury accidents (fatal + injury + 
non-incapacitating + possible injury). In the case of Minnesota some logistic 
modeling of severities was also done to determine the probability that an accident 
is severe. This made use of a severity variable Y defined on an accident 
database developed at the same time as the Minnesota segment and intersection 
data sets. This variable had value 1 if an accident was in one of the first two 
classes (fatal or injury) and value 0 otherwise (non-incapacitating, possible injury, 
or property damage only).

Run-off-road accidents are described by the variable RORACC. In Minnesota this is 
the sum of run-off-road left accidents and run-off-road right accidents. In Washington 
it was obtained indirectly from the HSIS variable V1EVENT2, as explained earlier.

Traffic Variables

A variable seg_lng, representing segment length in miles, is used to develop 
an exposure variable EXPO for segments. Seg_lng is obtained from true_beg 
and true_end in Minnesota and from begmpr and endmpr in Washington data 
(begmpr and endmpr are begmp and endmp with 250 feet removed if the 
segment begins or ends at an intersection). The variable EXPO is then given by:

The units of EXPO are millions of vehicle-miles (MVM).

The Minnesota and Washington intersection traffic variables are ADT1 and 
ADT2. These represent estimated average daily traffic on the major and minor 
road, respectively. As noted already, for Minnesota these variables are derived 
by applying growth factors to the Minnesota traffic variables, which tend to 
be somewhat out of date. In addition, a variable CINDEX, conflict index, is used 
for Minnesota intersection accident severity modeling. CINDEX is defined to be 
the ratio of average daily traffic entering the intersection from the minor road to 
average daily traffic entering the intersection from both minor and major road. 
CINDEX is given by:

Commercial traffic is represented in both segment and intersection databases by 
the variable T:
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Horizontal Alignment Variables

For horizontal curves DEG{i}, the degree of curve in degrees per hundred feet, is 
an important variable. It was present in the Minnesota data, while in the 
Washington data it had to be computed from the familiar formula:

where the radius is in feet. 

Various criteria were considered to determine how horizontal curves that were 
not entirely within a segment would be treated. One possible approach was to 
restrict attention to horizontal curves whose midpoints lie in the segment. 
This possibility was explored. However, the approach ultimately adopted was to 
regard a horizontal curve as eligible if any portion of it overlapped the 
segment. Variables associated with individual eligible horizontal curves are:

where seg_lngh is the segment length increased by adding on any portions 
of horizontal curves that fall outside the segment. These dimensionless weights are 
two different ways of taking into account the fact that horizontal curves may lie 
partly inside a segment and partly outside (or can even properly contain the 
segment). If two-thirds of the curve is inside, WH{i} has a numerator equal to two-
thirds the numerator of whm{i} while the latter has a denominator equal to 
the denominator of WH{i} plus one-third the curve length plus lengths of portions of 
any other horizontal curve that lie outside. These weights are intrinsically non-
negative, summing to a number less than or equal to 1.

Although in the final model for segments the variable WH{i} appears explicitly and 
each horizontal curve makes a separate contribution, in general the curves have to 
be aggregated in some fashion. The following aggregate variables are used in 
some segment models:

For the study of horizontal curves at intersections, each intersection was treated as 
a segment extending ± 250 feet along the major road from the intersection center 
or sometimes ± 764 feet. Two hundred fifty feet (or approximately 75 meters) is 
a typical length of an acceleration lane onto the major road, while 764 
feet (approximately 233 meters) is a typical distance required for a vehicle turning 
onto a major road from a minor leg to achieve reasonable speed. Horizontal 
curves were considered eligible if they met this artificial segment. Aggregate 
variables of the following form were considered:
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where the sum is over the corresponding curves. HI and HEI (E for extended) are 
the unweighted averages of the degrees of curvature of the corresponding curves.

Vertical Alignment Variables

Vertical alignment variables are subject to some of the same considerations 
as horizontal alignment variables.

A basic variable associated with each vertical curve is V{j}:

with units of percent per hundred feet. Change of grade g{j} equals g{j} - g{j+1} 
for the Minnesota data and g{j} - h{j} for the Washington data and l{j} is the length of 
the curve in hundreds of feet. Likewise a weight is associated with each 
individual curve that meets a segment, namely WV{j}: 

The aggregate variables VC, VM, VMC, and VMCC were used for segment models:

Crest curves are vertical curves for which the grade decreases (positive to 
negative, positive to less positive, negative to more negative), and crests of type I 
are crests for which the grade changes sign. The last three variables are 
unweighted averages of the V{j} variable, and their denominators equal seg_lng 
plus the length of portions of the corresponding curves that lie outside the 
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segment. The units of the denominators are miles. Variables for sag curves, for 
vertical curves with grade increases, and for sags of type III (with sign change) 
were also considered separately in Minnesota, but were not as significant as the 
crest variables.

For intersections three vertical variables were considered:

These sums are over the stipulated vertical curves, and hence VCI, VI, and VEI 
are unweighted averages of V{j} for each type of curve.

Complementary to vertical curves are sections of uniform grade and these also 
were used in the modeling for Minnesota and Washington segments. On such 
sections there is a constant absolute grade GR{k}. In Minnesota this was 
readily obtainable, but in Washington there were cases where h{k-1} and g{k} did 
not agree. Although other options were considered, for simplicity the segment 
section from e{k-1} to b{k} was treated as if it were of uniform grade with 
absolute grade GR{k} = |(h{k-1}+g{k})/2|. In addition to GR{k}, each such section had 
a variable WG{k}:

A composite variable GR was defined:

where the sum is over all uniform grade sections overlapping with the segment.

Angle Variables

An angle variable DEV, representing the average deviation from 90 , was defined by:

Two more angle variables are also used. DEV15 is a variable discovered 
empirically that seems to be negatively correlated with accidents on four-
legged intersections. Another intersection angle variable considered in this 
study, suggested by E. Hauer, is HAU:
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The variable HAU is a signed variable. See Figures 4 and 5 below. For a three-
legged intersection with the angle to the right of the increasing direction, HAU 
is positive when the angle is larger than 90 , as in 4(a), and HAU is negative when 
the angle is smaller than 90 , as in 4(b). If the angle is to the left of the 
increasing direction (see Figure 5), 180  minus the angle becomes the new angle 
and HAU is defined as ((180 - angle) - 90) = (90 - angle), as above. For four-
legged intersections, as in 4(c), it is the average of the two three-legged values 
(and thus 90  cancels out). Figure 5 illustrates the calculation of HAU in a variety 
of cases. It is thought that turns from the far lane of the major road may be 
less accident prone in situation 4a) than in situation 4b), so that positive values of 
HAU correspond to fewer accidents.
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Miscellaneous Variables

Some other segment variables included in the study are TOTWIDTH, DD, 
INTD, STATE, and SPD:

SPD is an amalgam of advisory and posted speeds seen on some roads together 
with HSIS speeds. Advisory and regulatory speeds, if seen on photologs, were 
given preference. However, photolog speeds were not collected for some 
Minnesota segments, were missing for others even when the photolog was searched 
a few miles outside the segment, and had multiple values in some cases when seen 
(i.e., changes in speed along a direction, different speeds in opposing directions, 
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a difference between regulatory and advisory speed). Minnesota HSIS speeds were 
for accident sites only (at the same segment or a nearby one). For Washington data, 
a posted speed variable was obtained from the HSIS roadway file, together 
with speeds for each horizontal and vertical curve from the HSIS alignment 
files. Averaging these to achieve a single number could not be done without 
some subjectivity.

Other intersection variables are RT and SPDI: 

 

 

 

 

SPDI 
is an amalgam of mainline speeds observed at intersections, averaged by 
approach where possible. 

Finally, two weather variables NONDRYP and SNP were devised for use with 
the Minnesota data:
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4. Analysis

Univariate Statistics

Tables 2 through 7 indicate the behavior of the chief variables on the six data 
sets: segments, three-legged intersections, and four-legged intersections in 
both Minnesota and Washington. It is instructive to make comparisons among 
these tables and in the case of Minnesota to compare the sample data with the 
population data in Appendix 1.

Minnesota versus Washington

Accidents tend to be more serious in Washington State than in Minnesota for 
segments and intersections, and the accident rate (accidents per MVM) on 
segments is much higher in Washington than in Minnesota. The accident rates 
appear to be comparable in the two States on intersections, but this may be 
somewhat misleading since the conflict index is lower for Washington than 
Minnesota. There also appears to be a higher percentage of run-off-road 
accidents in Washington. (This may be due to the indirect method employed to 
count Washington run-off-road accidents.)

There is more traffic in Washington on segments and major intersection 
approaches, and a higher density of driveways. Both of these suggest that the 
Washington data sets are less rural than those of Minnesota. Annual exposure 
(MVM per year) is about the same on average in both States, and this is 
accounted for by the fact that segment lengths are shorter on average in 
Washington.

Roadside Hazard Rating tends to be higher in Washington, with steeper 
grades. Washington averages for horizontal and vertical alignment are the 
same as or higher than Minnesota’s, but Washington tends to have fewer 
curves than Minnesota both on segments and in the vicinity of intersections. 
This may reflect historical differences in highway design practice and/or in the 
principles used to label roadway segments as segments. Likewise, Minnesota 
appears to have more angular variation at intersections than Washington 
(perhaps due in part to data shortcomings), and more turning lanes on the 
major road. Minnesota has wider shoulders than Washington, but Washington 
has more that are paved. These differences may also reflect design 
considerations and history.

Segments versus Intersections

Accidents at intersections tend to be more serious than those on segments, 
and accidents at intersections are more frequent (if an intersection is regarded 
as a segment 500 feet long), other things being equal. ADT rises as one goes 
from segments to major roads of three-legged intersections to major roads of 
four-legged intersections. The tables also show that three-leggeds tend to have 
more horizontal curvature than four-leggeds, but that vertical alignment tends 
to be about the same in three-leggeds and four-leggeds.
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Minnesota Sample versus Population

The Minnesota samples are quite comparable in the distribution of severities 
and the percentage of run-off-road accidents to their counterparts in the 
Minnesota populations represented in Appendix 1. With respect to segments, 
we can also compare ADT, commercial vehicle percentage, and lane width and 
find that they are quite similar between the sample and the population. 
Shoulder width and shoulder type between sample and population are also 
similar although there seems to be a slight tendency for the population of 
segments to have less shoulder width (albeit more of it paved) than the sample 
does.

TABLE 2. Summary Statistics: 619 Segments, Minnesota State

Two-Lane Rural Roads, 1985 -1989

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

 

Total Number 
of Accidents 
(TOTACC) 

0 58 1 2.74 1694 36.3 

Total Number 
of Injury 
Accidents 
(INJACC) 

0 23 0 0.99 614 
(36.25%) 

58.3 

Total Number 
of Run-Off-
Road 
Accidents 
(RORACC) 

0 15 0 0.88 547 
(32.29%) 

61.6 

http://www.tfhrc.gov/safety/98133/ch04/ch04_02.html (2 of 28) [19/03/2008 11.31.52]



Univariate Statistics

Severity: Fatal 
= K

Injury = A

Non-incap= B 

Poss-inj = C

Prop-dam = P 

 

  

 

 

  

 

  

 

  

 

32 
(1.9%)

89 
(5.2%)

256 
(15.1%)

237 
(14.0%)

1080 
(63.7%) 

  

 

Accident Rate 
(0.6656 
TOTACC/
MVM) 

0 9.32 0.44 0.70    

36.3 

Injury 
Accident Rate 
(0.2413 
INJACC/
MVM) 

0 4.66 0 0.25    

58.3 

Average Daily 
Traffic = ADT 

208 15,162 1,866 2,402    

  

 

Segment 
Length = 
seg_lng 
(miles) 

0.1 8.237 0.659 1.14    

  

 

Exposure over 
five years = 
EXPO (MVM) 

0.13 68.32 2.25 4.11    
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Commercial 
Vehicle 
Percentage = 
T (%) 

1.90 26.86 9.87 10.45    

  

 

Lane Width = 
LW (feet) 

10 12 12 11.54    

  

 

Shoulder 
Width = SHW 
(feet) 

0 12 8 7.08    

0.3 

Shoulder Type 
None

Gravel or 
Stone

Composite

Paved 

   

  

 

  

 

  

 

2 (0.3%)

341 
(55.1%)

35 
(5.7%)

241 
(38.9%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 2. Summary Statistics: 619 Segments, Minnesota State 
(continued) Two-Lane Rural Roads, 1985 -1989

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 
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Roadside 
Hazard Rating 
= RHR = 1

2

3

4

5

6, 7 

1 6 2 2.14 174 
(28.1%)

248 
(40.1%)

141 
(22.8%)

48 
(7.8%)

6 (1%)

2 
(0.3%), 

0 

 

Driveway 
Density = DD 

0 100 3.73 6.58    

22.5 

Intersection 
Density = 
INTD 

0 22.7 1.14 2.60    

31.7 

Light Yes

No 

   

  

 

  

 

  

 

5 
(0.8%)

614 
(99.2%) 

  

 

Terrain Flat

Rolling

Mountainous

Missing (not 
noted) 

   

  

 

  

 

  

 

249 
(46.2%)

28 
(4.5%)

1 
(0.2%)

341 
(55.5%) 
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Degree of 
Curve = H = 
3WH{i}DEG{i} 

0 7.50 0.078 0.51    

33.4 

Crest Curve 
Grade rate = 
VC = 3WV{i}(|
∆g{i}|/l{i}) 
(crests only) 

0 0.89 0.037 0.067    

16.5 

Absolute 
Grade = GR = 
3WG{i}GR{i} 
(%) 

0 4.46 0.24 0.38    

1.9 

Speed = SPD 
(mph) 

20 55 55 48.7    

  

 

Snow 
Percentage = 
SNP 

22.9 36.9 32.5 29.4    

  

 

Non-dry 
Percentage = 
NONDRYP 

41.0 56.6 45.5 47.4    

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 3. Summary Statistics: 712 Segments, Washington State

Two-Lane Rural Roads, 1993 -1995

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 
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Total Number 
of Accidents 
(TOTACC) 

0 29 1 2.40 1706 37.6 

Total Number 
of Injury 
Accidents 
(INJACC) 

0 13 0 1.11 790 
(46.31%) 

53.8 

Total Number 
of Run-Off-
Road 
Accidents 
(RORACC) 

0 19 1 1.39 993 
(58.21%) 

48.6 

Severity: Fatal 
= K

Injury = A

Non-incap = B

Poss-inj = C

Prop-dam = P 

 

  

 

 

  

 

  

 

  

 

39 
(2.3%)

130 
(7.6%)

381 
(22.3%)

240 
(14.1%)

916 
(53.7%) 

  

 

Accident Rate 
(1.0228 
TOTACC/
MVM) 

0 33.60 0.649 1.096    

37.6 

Injury 
Accident Rate 
(0.4736 
INJACC/
MVM) 

0 9.65 0 0.495    

53.8 
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Average Daily 
Traffic = ADT 

159 17,766 2,239 3,352    

  

 

Segment 
Length = 
seg_lng 
(miles) 

0.1 13.233 0.554 0.75    

  

 

Exposure over 
three years = 
EXPO (MVM) 

0.04 22.4 1.31 2.34    

  

 

Commercial 
Vehicle 
Percentage = 
T (%) 

1.55 52.22 11.73 13.04    

  

 

Lane Width = 
LW (feet) 

9 12 11 11.37    

  

 

Shoulder 
Width = SHW 
(feet) 

0 10 5 5.01    

0.8 

Shoulder Type 
Missing or 
other

Gravel or 
Stone

Composite

Paved 

   

  

 

  

 

  

 

8 (1.1%)

72 
(10.1%)

230 
(32.3%)

402 
(56.5%) 
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1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 3. Summary Statistics: 712 Segments, Washington State 
(continued)

Two-Lane Rural Roads, 1993 -1995

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

Roadside 
Hazard 
Rating = RHR 
= 1

2

3

4

5

6

7 

1 7 3 3.67 38 
(5.3%)

152 
(21.4%)

181 
(25.4%)

109 
(15.3%)

128 
(18.0%)

73 
(10.3%)

31 
(4.4%) 

  

 

Driveway 
Density = DD 

0 85.07 6.12 10.12    

18.1 

Intersection 
Density = 
INTD 

0 17.3 0 0.12    

97.5 
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Light Yes

No 

   

  

 

  

 

  

 

21 
(2.9%)

691 
(97.1%) 

  

 

Terrain Flat

Rolling

Mountainous 

   

  

 

  

 

  

 

157 
(22.1%)

485 
(68.1%)

70 
(9.8%) 

  

 

Degree of 
Curve = H = 
3WH{i}DEG{i} 

0 30.55 0.319 1.028    

36.7 

Crest Curve 
Grade rate = 
VC = 3WV{i}(|
∆g{i}|/l{i}) 
(crests only) 

0 1.997 0.026 0.068    

36.8 

Absolute 
Grade = GR = 
3WG{i}GR{i} 
(%) 

0 6.92 0.494 0.92    

13.1 

Speed = SPD 
(mph) 

21.9 55 55 50.5    

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 4. Summary Statistics: 389 Three-Legged Intersections, 
Minnesota State Two-Lane Rural Roads, 1985 - 1989
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Univariate Statistics

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

 

Total 
Number of 
Accidents 
(TOTACC) 

0 39 0 1.35 524 51.9 

Total 
Number of 
Injury 
Accidents 
(INJACC) 

0 17 0 0.59 229 
(43.70%) 

69.9 

Total 
Number of 
Run-Off-
Road 
Accidents 
(RORACC) 

0 4 0 0.12 45 
(8.59%) 

90.7 

Severity: 
Fatal = K

Injury = A

Non-incap = 
B

Poss-inj = C

Prop-dam = 
P 

 

  

 

 

  

 

  

 

  

 

8 (1.5%)

26 
(5.0%)

84 
(16.0%)

111 
(21.2%)

295 
(56.3%) 

  

 

Accident 
Rate 
(TOTACC 
per million 
entering 
vehicles) 

0 3.08 0 0.16    

51.9 
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Univariate Statistics

Accident 
Rate (0.269 
TOTACC /
YEAR) 

0 7.8 0 0.269    

51.9 

Injury 
Accident 
Rate (0.118 
INJACC/
YEAR) 

0 0.8 0 0.118    

69.9 

Average 
Daily Traffic 
on Major 
Road = 
ADT1 

201 19,413 2,313 3,687    

  

 

Average 
Daily Traffic 
on Minor 
Road = 
ADT2 

4.5 4,206 240 413    

  

 

Conflict 
Index = 
CINDEX 

0.002 0.442 0.049 0.077    

  

 

Angular 
Deviation 
from 90° = 
DEV 
(degrees) 

0 90 0 13.4    

50.6 
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Univariate Statistics

Roadside 
Hazard 
Rating = 
RHRI = 1

2

3

4

5

6,7 

1 5 2 2.11 98 
(25.2%)

184 
(47.3%)

74 
(19.0%)

32 (8.2 
%)

1 (0.3%)

0 (0.0%) 

  

 

Number of 
Driveways = 
ND 

0 9 1 1.26    

37.5 

1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 4. Summary Statistics: 389 Three-Legged Intersections, 
Minnesota State (continued)

Two-Lane Rural Roads, 1985 - 1989

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

Light Yes

No 

   

  

 

  

 

  

 

1 
(0.3%)

388 
(99.7%) 
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Univariate Statistics

 

Terrain Flat

Rolling

Missing (not 
noted) 

   

  

 

  

 

  

 

115 
(29.6%)

28 
(7.2%)

246 
(63.2%) 

  

 

Degree of 
Curve = HI = 
(1/n)3DEG{i} 

0 29 0 1.21    

54.0 

Crest Curve 
Grade Rate = 
VCI = (1/m)3(|
∆g{i}|/l{i}) 

(crests only) 

0 4.39 0 0.14    

52.7 

Speed = SPDI 
(mph) 

22.5 55 55 52.7    

  

 

Turning Lanes 
on Main Road 
None

Right Turn 

Bypass Lane 

Both 

   

  

 

  

 

  

 

216 
(55.5%)

119 
(30.6%)

8 
(2.1%)

46 
(11.8%) 
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Univariate Statistics

 

Right Turn/
Acceleration 
Lane on Minor 
Leg Yes

No 

   

  

 

  

 

  

 

8 
(2.1%)

381 
(97.9%) 

  

 

Snow 
Percentage = 
SNP 

22.9 36.9 28.4 29.1    

  

 

Non-dry 
Percentage = 
NONDRYP 

41.0 55.6 46.7 47.5    

  

1 mi = 1.61 km, 1 ft = 0.3048 m 

TABLE 5. Summary Statistics: 181 Three-Legged Intersections, 
Washington State Two-Lane Rural Roads, 1993 - 1995

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

 

Total 
Number of 
Accidents 
(TOTACC) 

0 9 0 1.02 184 58.6 

Total 
Number of 
Injury 
Accidents 
(INJACC) 

0 7 0 0.470 85 
(46.20%) 

72.4 
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Total 
Number of 
Run-Off-
Road 
Accidents 
(RORACC) 

0 5 0 0.204 37 
(20.11%) 

85.1 

Severity: 
Fatal = K

Injury = A

Non-incap = 
B

Poss-inj = C

Prop-dam = 
P 

 

  

 

 

  

 

  

 

  

 

2 (1.1%)

12 
(6.5%)

37 
(20.1%)

34 
(18.5%)

99 
(53.8%) 

  

 

Accident 
Rate 
(TOTACC 
per million 
entering 
vehicles) 

0 1.00 0 0.135    

58.6 

Accident 
Rate (0.339 
TOTACC/
YEAR) 

0 3 0 0.339    

58.6 

Injury 
Accident 
Rate (0.157 
INJACC/
YEAR) 

0 2.333 0 0.157    

72.4 
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Univariate Statistics

Average 
Daily Traffic 
on Major 
Road = 
ADT1 

897 15,995 4,838 5,780    

  

 

Average 
Daily Traffic 
on Minor 
Road = 
ADT2 

4 7,529 196 573    

  

 

Conflict 
Index = 
CINDEX 

0.0003 0.366 0.020 0.052    

  

 

Angular 
Deviation 
from 90° = 
DEV 
(degrees) 

0 55 0 8.93    

95.6 

Roadside 
Hazard 
Rating = 
RHRI = 1

2

3

4

5

6, 7 

1 6 3 3.3 7 (3.9%)

39 
(21.5%)

51 
(28.2%)

61 
(33.7%)

21 
(11.6%)

2 
(1.1%), 
0 (0.0%) 
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Univariate Statistics

 

Number of 
Driveways 
= ND 

0 12 1 1.486    

37.0 

1 mi = 1.61 km, 1 ft = 0.3048 m

TABLE 5. Summary Statistics: 181 Three-Legged Intersections, 
Washington State (continued)

Two-Lane Rural Roads, 1993 - 1995

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

Light Yes

No 

   

  

 

  

 

  

 

35 
(19.3%)

146 
(80.7%) 

  

 

Terrain Flat

Rolling

Mountainous 

   

  

 

  

 

  

 

42 
(23.2%)

124 
(68.5%)

15 
(8.3%) 

  

 

Degree of 
Curve = HI = 
(1/n)3DEG{i} 

0 22.2 0 1.22    

68.0 

http://www.tfhrc.gov/safety/98133/ch04/ch04_02.html (18 of 28) [19/03/2008 11.31.53]



Univariate Statistics

Crest Curve 
Grade Rate = 
VCI = (1/m)3(|
∆g{i}|/l{i}) 

(crests only) 

0 4.32 0 0.16    

68.0 

Speed = 
SPDI (mph) 

23.75 55 55 52.1    

  

Turning 
Lanes on 
Main Road 
None

Right Turn 

Bypass Lane

Both 

   

  

 

  

 

  

143 
(79.0%)

12 
(6.6%)

12 
(6.6%)

14 
(7.7%) 

  

Right Turn/
Acceleration 
Lane on 
Minor Leg 
Yes No 

   

  

 

  

 

  

4 
(2.2%)

177 
(97.8%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m

TABLE 6. Summary Statistics: 327 Four-Legged Intersections, Minnesota 
State Two-Lane Rural Roads, 1985 - 1989

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

 

Total Number 
of Accidents 
(TOTACC) 

0 16 1 1.51 494 39.8 
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Univariate Statistics

Total Number 
of Injury 
Accidents 
(INJACC) 

0 9 0 0.77 253 
(51.2%) 

59.9 

Total Number 
of Run-Off-
Road 
Accidents 
(RORACC) 

0 2 0 0.092 30 
(6.1%) 

92.4 

Severity: Fatal 
= K

Injury = A

Non-incap = B

Poss-inj = C

Prop-dam = P 

 

  

 

 

  

 

  

 

  

 

18 
(3.6%)

40 
(8.1%)

96 
(19.4%)

99 
(20.0%)

241 
(48.8%) 

  

 

Accident Rate 
(TOTACC per 
million 
entering 
vehicles) 

0 2.87 0.201 0.323    

39.8 

Accident Rate 
(0.302 
TOTACC/
YEAR) 

0 3.2 0.2 0.302    

39.8 

Injury 
Accident Rate 
(0.155 
INJACC/
YEAR) 

0 1.8 0 0.155    

59.9 
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Univariate Statistics

Average Daily 
Traffic on 
Major Road = 
ADT1 

174 14,611 2,620 2,238    

  

 

Average Daily 
Traffic on 
Minor Road = 
ADT2 

6.9 3,414 192 308    

  

 

Conflict Index 
= CINDEX 

0.003 0.637 0.103 0.142    

  

 

Angular 
Deviation from 
90° = DEV
(degrees) 

0 75 0.6 9.9    

37.6 

Roadside 
Hazard Rating 
= RHRI = 1

2

3

4

5

6, 7 

1 6 2 2.02 97 
(29.7%)

157 
(48.0%)

51 
(15.6%)

16 
(4.9%)

5 
(1.5%)

1 
(0.3%), 

0 
(0.0%) 
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Number of 
Driveways = 
ND 

0 6 0 0.62    

67.6 

1 mi = 1.61 km, 1 ft = 0.3048 m

TABLE 6. Summary Statistics: 327 Four-Legged Intersections, Minnesota 
State (continued)

Two-Lane Rural Roads, 1985 - 1989

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

Light Yes

No 

   

  

 

  

 

  

 

1 
(0.3%)

326 
(99.7%) 

  

 

Terrain Flat

Rolling

Missing (not 
noted) 

   

  

 

  

 

  

 

166 
(50.8%)

20 
(6.1%)

141 
(43.1%) 

  

 

Degree of 
Curve = HI = 
(1/n)3DEG{i} 

0 9 0 0.49    

59.9 
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Crest Curve 
Grade Rate = 
VCI = (1/m)3(|
∆g{i}|/l{i}) 

(crests only) 

0 2.94 0.025 0.152    

48.0 

Speed = SPDI 
(mph) 

30 55 55 54.0    

  

 

Right Turn 
Lanes on Main 
Road 

None

One Right 
Turn 

Two Right 
Turns 

   

  

 

  

 

  

 

 

155 
(47.4%)

30 
(9.2%)

142 
(43.4%) 

  

 

Right Turn/
Acceleration 
Lanes on 
Minor Legs 
None

Both 

   

  

 

  

 

  

 

 

326 
(99.7%)

1 
(0.3%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m

TABLE 7. Summary Statistics: 90 Four-Legged Intersections, Washington 
State Two-Lane Rural Roads, 1993 - 1995

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 
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Total 
Number of 
Accidents 
(TOTACC) 

0 18 1 2.83 255 42.2 

Total 
Number of 
Injury 
Accidents 
(INJACC) 

0 13 0 1.77 159 
(62.35%) 

53.3 

Total 
Number of 
Run-Off-
Road 
Accidents 
(RORACC) 

0 2 0 0.24 22 
(8.63%) 

78.9 

Severity: 
Fatal = K

Injury = A

Non-incap 
= B

Poss-inj = 
C

Prop-dam 
= P 

 

  

 

 

  

 

  

 

  

 

5 (2.0%)

20 
(7.8%)

72 
(28.2%)

62 
(24.3%)

96 
(37.6%) 

  

 

Accident 
Rate 
(TOTACC 
per million 
entering 
vehicles) 

0 1.73 0.131 0.328    

42.2 
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Accident 
Rate 
(0.944 
TOTACC/
YEAR) 

0 6 0.333 0.944    

42.2 

Injury 
Accident 
Rate 
(0.589 
INJACC/
YEAR) 

0 4.33 0 0.589    

78.9 

Average 
Daily 
Traffic on 
Major 
Road = 
ADT1 

1,143 17,205 6,540 7,381    

  

 

Average 
Daily 
Traffic on 
Minor 
Road = 
ADT2 

6 3,165 416 718    

  

 

Conflict 
Index = 
CINDEX 

0.001 0.480 0.0646 0.0934    

  

 

Angular 
Deviation 
from 90° = 
DEV
(degrees) 

0 45 0 2.47    

88.9 
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Univariate Statistics

Roadside 
Hazard 
Rating = 
RHRI = 1

2

3

4

5

6, 7 

1 5 3 2.82 9 
(10.0%)

23 
(25.6%)

38 
(42.2%)

15 
(16.7%)

5 (5.6%) 

0 
(0.0%), 
0 (0.0%) 

  

 

Number of 
Driveways 
= ND 

0 7 0 1.11    

53.3 

1 mi = 1.61 km, 1 ft = 0.3048 m

TABLE 7. Summary Statistics: 90 Four-Legged Intersections, Washington 
State (continued) 

Two-Lane Rural Roads, 1993 - 1995

Variable and 
Abbreviation 

Min. Max. Median Mean Freq %
Zero 

Light Yes

No 

   

  

 

  

 

  

 

33 
(36.7%)

57 
(63.3%) 
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Terrain Flat

Rolling

Mountainous 

   

  

 

  

 

  

 

28 
(31.1%)

60 
(66.7%)

2 
(2.2%) 

  

 

Degree of 
Curve = HI = 
(1/n)3DEG{i} 

0 6.50 0 0.497    

78.9 

Crest Curve 
Grade Rate = 
VCI = (1/m)3(|
∆g{i}|/l{i}) 

(crests only) 

0 3.585 0 0.185    

66.7 

Speed = SPDI 
(mph) 

22.5 55 55 51.0    

  

 

Right Turn 
Lanes on 
Major Road 
None

One Right 
Turn 

Two Right 
Turns 

   

  

 

  

 

  

 

53 
(58.9%)

8 
(8.9%)

29 
(32.2%) 
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Right Turn/
Acceleration 
Lanes on 
Minor Legs 
None

Both 

   

  

 

  

 

  

 

89 
(98.9%)

1 
(1.1%) 

  

1 mi = 1.61 km, 1 ft = 0.3048 m
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4. Analysis

Bivariate Statistics

In this section tables are exhibited that indicate the correlation coefficient between 
accident count and one other highway variable. A positive coefficient indicates that as 
the highway variable increases accident counts do also; a negative coefficient indicates 
that as one variable increases the other tends to decrease. When a relationship 
is pronounced significant in this discussion, it means that the P-value is small 
(say, under 15%, and usually under 5%). The P-value is the probability that the sample 
correlation would have the given magnitude or greater when the true correlation in the 
population is zero. Thus significant relationships are ones that provide strong evidence 
that the two variables are correlated on the population from which the sample comes.

A major limitation of bivariate statistics is that the relationship between one 
variable and another may be masked or appear in a misleading light when a few 
especially influential variables such as ADT are present and their effect is ignored. The 
effect of a geometric variable, for example, on accidents when ADT is held constant is 
best revealed by the modeling to be discussed later since the modeling attempts 
to assess the combined contributions of all variables. With this caveat, bivariate 
statistics for accidents versus other variables are presented in Tables 8, 9, and 10. 
In Tables 11, 12, and 13 some of the significant correlations of highway variables with 
one another are also shown (in qualitative form rather than quantitative). 

Segment Accidents

The most pronounced correlations with accidents, applicable in both Minnesota and 
Washington, are as follows:

Horizontal and vertical alignment also correlate positively with accidents but are not 
consistently significant. Some variables yield opposite signs from one State to the 
other, notably, lane and shoulder width, each of which is negatively correlated 
with accidents in Minnesota and positively in Washington. The consistent 
negative correlation of truck percentage suggests that trucks avoid the most dangerous 
roads. The weather variables in Minnesota are not significant.

If the accidents are restricted to serious accidents or run-off-road accidents, the 
same relationships persist with slight changes. The negative correlation of truck 
percentage is less significant. On the other hand, for run-off-road accidents both 
horizontal alignment H and grade GR are more significant.

Three-legged Intersection Accidents

Accidents at three-legged intersections show the following relationships:
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Bivariate Statistics

positive correlation

ADT1

ADT2

RT

Horizontal and vertical alignment or driveways nearby generally contribute positively 
to accident counts but not in a consistently significant manner. Turning lanes are 
often installed at intersections with high turning volumes and high accident counts, 
but it is not clear why a right turn lane on the mainline would correlate positively 
with accidents while the conflict index would show much less significance 
(in Minnesota). Bad weather is marginally significant at Minnesota three-leggeds.

Serious accidents and run-off-road accidents show the same pattern although major 
road ADT is not significant for run-off-road accidents.

Four-legged Intersection Accidents

The significant correlations in this case are:

Positive correlation

ADT1

ADT2

CINDEX 

The Minnesota data, but not the Washington data, show expected dependencies on 
channelization, alignment, Roadside Hazard Rating, number of driveways, as well as 
(weak) positive dependence on bad weather.

Serious and run-off-road accidents behave likewise, but major road ADT is 
not significant for run-off-road accidents.

http://www.tfhrc.gov/safety/98133/ch04/ch04_03.html (2 of 11) [19/03/2008 11.32.06]



Bivariate Statistics

http://www.tfhrc.gov/safety/98133/ch04/ch04_03.html (3 of 11) [19/03/2008 11.32.06]



Bivariate Statistics

 

Table 9. Bivariate Statistics: 3-Legged Intersection Accidents versus Other Variables
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Table 10: Bivariate Statistics: 4-Legged Intersection Accidents versus Other Variables

http://www.tfhrc.gov/safety/98133/ch04/ch04_03.html (5 of 11) [19/03/2008 11.32.06]



Bivariate Statistics

 

TABLE 11. Correlations between Segment Variables in 

MN and WA Samples

 

VARIABLE 

POSITIVE 
CORRELATES 

NEGATIVE 
CORRELATES 

ADT SHW, TOTWIDTH T, SEG_LGN 

http://www.tfhrc.gov/safety/98133/ch04/ch04_03.html (6 of 11) [19/03/2008 11.32.06]



Bivariate Statistics

T

Truck % 

SEG_LGN, SHW, 
TOTWIDTH, SPD 

ADT, SNP, NONDRYP 

SEG_LGN T, RHR, SPD, SNP, 
NONDRYP 

ADT, DD, INTD, SHW 

LW Lane width SPD   

 

SHW Shoulder width 

ADT, T, SPD RHR, H, VC, GR 

TOTWIDTH ADT, T, SPD RHR, H, VC, GR 

RHR 

Roadside Hazard Rating 

SEG_LGN, H, VC, GR, 
SNP, NONDRYP 

SHW, TOTWIDTH, SPD 

DD Drwyrate INTD T, SEG_LGN, SPD 

INTD Intrate DD SEG_LGN 

H Hor RHR, VC, GR SEG_LGN, SHW, 
TOTWIDTH, SPD 

VC Crests RHR, H, GR T, TOTWIDTH, SPD 

GR Absolute grade RHR, H, VC SHW, TOTWIDTH, SPD 

SPD Speed T, SEG_LGN, LW, 
SHW, TOTWIDTH 

RHR, DD, H, VC, GR 

SNP, NONDRYP (MN 
only) 

SEG_LGN, RHR, H T 

NOTE: Segment length (SEG_LGN), Roadside Hazard Rating (RHR), Speed (SPD), 
and Truck Percentage (T) show strong correlation with a large number of variables. 
Segment lengths tend to be longer in rural areas and this accounts for the negative 
correlation with ADT, driveway density, and intersection density. The Roadside Hazard 
Rating and Speed variables also show expected correlates. The behavior of the Truck 
Percentage variable suggests that teamsters favor routes with certain characteristics 
and/or that such routes are more likely to have commercial development nearby.

TABLE 12. Correlations between 3-Legged Intersection Variables in 

MN and WA Samples
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VARIABLE 

POSITIVE 
CORRELATES 

NEGATIVE 
CORRELATES 

ADT1 ADT2, ND, SNP, 
NONDRYP 

CINDEX, SPDI 

ADT2 ADT1, CINDEX, ND, HI, 
RT 

SPDI 

CINDEX ADT2, HI ADT1, SPDI, SNP, 
NONDRYP 

DEV from 90° RHRI   

 

RHRI Roadside Hazard 
Rating 

DEV, HI, VI   

 

ND No. of Drwys " 250 
ft 

ADT1, ADT2, HEI, SNP, 
NONDRYP 

SPDI 

HI Hor. to ± 250 ft ADT2, CINDEX, RHRI, 
VCI, VI, VEI 

SPDI 

HEI Hor. to ± 764 ft ADT2, CINDEX, RHRI, 
ND, VI, VEI 

SPDI 

VCI Crests to ± 250 ft HI, VI, VEI SPDI 

VI Vert. to ± 250 ft RHRI, HI, HEI, VCI, VEI SPDI 

VEI Vert. to ± 764 ft RHRI, HI, HEI, VCI, VI SPDI 

SPDI Speed    

ADT1, ADT2, CINDEX, 
ND, HI, HEI, VCI, VI, 
VEI 

RT Right Turn Lane on 
Major Road 

ADT2   
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SNP, NONDRYP (MN 
only) 

ADT1, ND CINDEX 

1 mile = 1.61 km, 1 ft = .3048 m

NOTE: Perhaps the fact of chief interest in Table 12 (the 3-legged intersections) is the 
negative correlation between posted speed and the other variables of interest. In Table 
13 (the 4-legged intersections) speed plays a similar role but not quite so marked.

TABLE 13. Correlations between 4-Legged Intersection Variables in 
MN and WA Samples

 

VARIABLE 

POSITIVE 
CORRELATES 

NEGATIVE 
CORRELATES 

ADT1 ADT2, DEV, HI, SNP, 
NONDRYP 

CINDEX 

ADT2 ADT1, CINDEX, RT   

 

CINDEX 

ADT2, RT ADT1 

DEV from 90E ADT1 SPDI 

RHRI Roadside Hazard 
Rating 

VI, VEI   

 

ND No. of Drwys ± 250 ft 

SNP, NONDRYP SPDI 

HI Hor. to ± 250 ft HEI, SNP, NONDRYP   

 

HEI Hor. to ± 764 ft 

HI, RT, SNP, NONDRYP SPDI 

VCI Crests to ± 250 ft VI, VEI SPDI 

VI Vert. to ± 250 ft RHRI, VCI, VEI   
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VEI Vert. to ± 764 ft 

RHRI, VCI, VI SNP, NONDRYP 

SPDI Speed    

DEV, ND 

RT Right Turn Lanes on 
Major Road 

ADT2, CINDEX, HEI   

 

SNP, NONDRYP (MN 
only) 

ADT1, DEV, ND, HI. HEI VEI, SPDI 

1 mile = 1.61 km, 1 ft = .3048 m

Other Bivariate Relationships

Bivariate relationships between highway variables are also in evidence as might be 
expected. In Tables 11, 12, and 13 above we indicate relationships in which 
the correlation coefficient has the same sign in both Minnesota and Washington 
and the correlation is strongly significant in both States (P-value typically less than 5%) 
or strongly significant in one State and moderately significant in the other (P-
value typically less than 15%). We omit obvious correlations (e.g., between 
different vertical measures). 

In the case of weather variables (SNP and NONDRYP) the correlation is for Minnesota 
data, the only State where weather data were collected. The weather variables show 
some surprising correlations in the intersection samples. See Table 14 below. 
These correlations have no counteparts in the segment data. The direct 
implication, however frivolous it may be, is that rural intersections

TABLE 14. Correlations between Weather and Minnesota Highway Variables

 

Correlation 
coefficient 
and P-
value 

Minnesota 3-legged 
intersection sample 

Minnesota 4-legged 
intersection sample 

ADT1 ND ADT1 ND 

NONDRYP .21201, .0001 .12608, .0128 .12202, .0274 .21916, .0001 

SNP .19164, .0001 .13523, .0076 .09611, .0827 .21555, .0001 

with high major road ADT or with nearby driveways tend to have more rain and 
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snow than other rural intersections. The correlation of weather with minor road ADT is 
not significant.
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4. Analysis

Summary

A wide variety of variables have been introduced in this chapter to 
facilitate the modeling in the next. 

The summary univariate statistics for these variables (Tables 2 
through 7) indicate that most of them show a good range of values that 
will provide variation for the modeling. Exceptions are: lighting along 
the segments (the vast majority have none), right turn/acceleration 
lanes on the minor legs of intersections (most have none), and 
intersection angle deviation from 90° on Washington State 
intersections. Most Washington intersection angles are 90° , perhaps 
in part because photolog estimates had to be used in Washington 
State and are much cruder than those obtained from Minnesota plans. 

Bivariate statistics indicate that commercial traffic on two-lane 
segments correlates negatively with accidents while surface width and 
lane width have unexpected effects in Washington State. Traffic is the 
dominant variable for intersections, but the existence of a right turn 
lane on the major road correlates positively with accidents on three-
legged intersections.

Bivariate relationships between accident variables and highway 
variables should be interpreted with caution: they may indicate that the 
highway variable correlates with a another influential highway variable. 
Modeling with several variables simultaneously may permit greater 
insight into the relative effects of different highway variables.
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5. Modeling

Poisson and Negative Binomial Modeling Techniques

The Poisson and Negative Binomial Models

Poisson and negative binomial models, with parameters a generalized linear function 
of covariates, are by now a well-accepted method of modeling discrete rare 
events such as roadway accidents. See Miaou and Lum (1993). It is assumed 
that accidents occurring on a particular roadway or at a particular intersection 
are independent of one another and that a certain mean number of accidents per 
unit time is characteristic of the given site and of other sites with the same 
properties. The mean itself is assumed to depend on highway variables. Since 
the mean must be greater than zero, it is taken to have a generalized linear form 
given by:

.

where P( i) is the probability of i accidents at the given site. The negative 
binomial distribution adds a quadratic term to the variance representing 
overdispersion. The negative binomial model takes the form:
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The coefficients  are estimated by maximizing the log-likelihood function L( ) for 
the Poisson distribution:

 

 (5.2) 

 

Here  = ( 0, 1, ...., n) is the vector of coefficients, yi is the observed 
accident count for segment

(5.3)

 

For convenience the same letters will often be used for both the parameters and 
their estimated values, i.e., hats ^ will be omitted.

Model Evaluation - Overdispersion

A decision about whether the Poisson form is appropriate can be based on one 
of several statistics. As noted in SAS Technical Report P-243 the deviance of a 
model m is:

where Lf is the log-likelihood (5.2) that would be achieved if the model gave a perfect 

fit ( i =  i for each i, and K = 0) and Lm is the log-likelihood (5.2 or 5.3) of the 
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model under consideration ( i = i ). If the latter model is correct, Dm is approximately 

a chi-squared random variable with degrees of freedom equal to the number n 
of observations minus the number p of parameters.

A value of the deviance greatly in excess of n - p suggests that the model 
is overdispersed due to missing variables and/or non-Poisson form. Thus 
when deviance divided by degrees of freedom

is significantly larger than 1, overdispersion is indicated.

Likewise, the Pearson chi-square statistic, defined by

 

is an approximately chi-squared random variable with mean n - p for a valid 
Poisson model. If 

is significantly larger than 1, overdispersion is also indicated.

On the assumption that the basic form of the model is correct, Dean and 
Lawless (1989) recommend yet another statistic T1 to test the hypothesis that 
the model is a Poisson model against the alternative that it is overdispersed. When 
the null hypothesis K = 0 is true and the number of observations is large, the statistic

is approximately a standard normal random variable. If T1 is large positive, 
the hypothesis K = 0 is rejected, the data are considered to be overdispersed, and 
a negative binomial model with K positive is an alternative candidate model. 

Model Evaluation - Goodness of Fit

In addition to a plausible basis for the underlying distributional assumptions, 
three important tests for an acceptable model are the following:

· The estimated regression coefficient for each covariate should be 
statistically significant, i.e., one should be able to reject the null hypothesis that 
the coefficient is zero; 

· Engineering and intuitive judgments should be able to confirm the validity 
and practicality of the sign and rough magnitude of each estimated coefficient; and 

· Goodness-of-fit measures and statistics, such as R-squared (the coefficient 
of determination), the deviance, and the Pearson chi-square, should indicate that 
the variables do have explanatory and predictive power. 
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The modeling of the data in this study was done using SAS and LIMDEP 
software. Along with approximate maximum likelihood estimates for the 
regression coefficients, these software packages yield estimates of the standard 
error for each coefficient. From these, P-values can be computed for the 
null hypothesis that the true value of some regression coefficient is zero. The z-score 
of the estimated coefficient is the estimated coefficient minus zero, divided by 
the estimated standard error. The P-value is the probability that a normal 
random variable has an absolute value larger than the z-score obtained. If the P-
value is small, we have good evidence that the corresponding variable is 
significant, that the difference between the coefficient estimate and zero arises not 
from chance but from a systematic effect.

Goodness-of-fit measures associated with Poisson-type models have been 
introduced and reviewed by Fridstrøm et al. (1995) and Miaou (1996).

The R-squared goodness-of-fit measures, used to estimate the percentage of 
variation explained by a regression model, are somewhat controversial. Different 
R-squared measures may yield substantially different answers, or even answers 
larger than 1, particularly for models that are not linear. See the article of 
Kvalseth (1985). Until recently, R-squared measures appropriate for Poisson 
or negative binomial models had not been established. Fridstrøm et al. 
(1995) developed several alternative goodness-of-fit methodologies for 
generalized Poisson regression models. Four of these approaches are used here 
to evaluate goodness-of-fit. 

The first approach is based on the ordinary R-squared, or coefficient of 
determination, used in linear regression models: 

 (5.4)

where

yi = observed accident count for highway segment or intersection no. i

 = average accident count for the sample

i = estimated mean accident count for observation no. i

The numerator in the second term (of 5.4) is the variation not explained by the 
model. In a perfectly specified and estimated Poisson model (variance equal to 
mean), the most that can be explained of the given data is expected to be P2, where
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(5.6)
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The variable  is approximately a standard normal random variable (at least for 
yi larger than 1).

The three measures introduced so far are strongly oriented toward Poisson 
models. Indeed because they do not explicitly include an overdispersion 
parameter they seem inappropriate for negative binomial models. But a 
fourth approach is tailored to the negative binomial.

The fourth approach, the Log-Likelihood R-squared, is based on the deviance Dm 
of the model. Fridstrøm et al. propose the following measures:

equations (5.13, 5.14, 5.15 respectively)

Here D0 is the deviance of a model with only two parameters, the constant 
term (intercept) and the overdispersion parameter; k is the number of parameters of 
the model m under consideration (not including the overdispersion parameter in 
the model); and DEm is the expected value of the deviance in the case when a 
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Poisson model with the same means yi as the model m is the correct one. 

Roughly speaking, RD2 indicates how much explanatory power results from adding 

the highway characteristics and R2PD represents this as a fraction of the 

highest possible expected explanatory power of any model with the same means as m. 

For negative binomial and Poisson models Fridstrøm et al. regard R2PD and R2PFT 

with favor. They express reservations about R2P and RPW2 the first of these, 

being unnormalized, will make observations with large predicted means 
more influential, while the second tends to exaggerate the estimation errors 
associated with small predicted means.

Yet another measure of goodness-of-fit, this one advocated by Miaou (1996), is 
based explicitly on the overdispersion parameter.

(5.16)

Here K is the overdispersion parameter estimated in the model, and Kmax is 
the overdispersion parameter estimated in the negative binomial model 
discussed above, namely, the model with only a constant term and an 
overdispersion parameter. Based on simulations Miaou concluded that this 
measure shows promise. It is simple to calculate, it yields a value between 0 and 1, 
it has the proportionate increase property (Miaou proposes as a criterion 
that independent variables of equal importance, when added to a model, increase 
the value of the measure by the same absolute amount regardless of the order in 
which they are added), and it is independent of the choice of intercept term in 
the model.
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5. Modeling

Segment Models

In this section we develop models for segments. The models are of Poisson 
type, negative binomial type, and extended negative binomial type. We discuss 
the choice of variables and explain the steps that lead to the final models 
presented. The choice of variables to retain, and the form in which to use them, are 
to some extent arbitrary since not all possibilities can be examined and some are 
more or less equivalent. The decisions are guided by criteria of simplicity (use 
of variables that are easily understood), comprehensiveness (inclusion of as 
many types of variables as possible), and significance (coefficients that are 
significantly different from zero according to statistical tests in one or more 
models). Many models can be generated, and we present here only a selection 
of models that illustrate the main phenomena and/or show the significant interactions.

In general, we will exhibit a formula for the mean number of accidents on a segment 
as a generalized linear function of highway variables. This formula will show 
the estimated coefficient of each variable in the model. In addition, we show 
the estimated standard error of the coefficient estimate and its P-value. The P-value 
is the probability that the estimated coefficient would have the value shown or 
any value farther from zero when the true coefficient is zero. A P-value of less than 
5% is usually considered ample confirmation that the true coefficient is non-zero 
and that the estimated coefficient is significant. Later on, for the intersection 
models, we will liberalize this criterion considerably.

The State Variable

The STATE variable (value 0 for Minnesota, 1 for Washington) is used on all 
models that combine the two States. In effect it allows the constant or intercept term 
in each State to be different while constraining other coefficients to be the 
same. Including such a variable is equivalent to acknowledging that the 
accident experience of two different States is likely to be different on segments with 
the same traffic volumes and same highway characteristics. The STATE 
variable represents the demographics and habits of a different population of drivers in 
a different region and perhaps at a different era. Law enforcement practices, 
driver ages, and life styles may be quite different. Although the extra degree of 
freedom makes it easier to develop a combined model, it is of some interest when 
the coefficient of the State variable is insignificant (as it is in a few of the 
models below). 

The Exposure Variable

For the segment modeling it is natural to include both segment length (seg_lng) 
and ADT as explanatory variables, and to expect that the number of accidents will 
be roughly proportional to the product of these factors times the time in days (365 
days per year times 5 years in Minnesota or 3 years in Washington). Poisson models 
in Minnesota (Table 15) support this rough proportionality. If total number of 
accidents is modeled as a function of segment length and ADT, we obtain the following:

TABLE 15. Minnesota Segments, Poisson Models with Exposure Variables

Mean No. of Accidents = 5H(365/10^3)× exp{-.3916 + 1.0150 LSEG + .9765 LADT}

Estimated standard error .0448 .0278 .0344

of coefficient estimates

P-value .0001 .0001 .0001
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Mean No. of Accidents = EXPO× exp{-.3934 - .0040 AVGM}

Estimated standard error .0382 .0278 

of coefficients estimates

P-value .0001 .6474 

1 mile = 1.61 km

where LSEG is the log of the segment length and LADT is the log of AVGM (ADT 
in 1000's of vehicles per day). The Minnesota standard errors are consistent with 
the conclusion that the true coefficients of LSEG and LADT are 1. The second 
model shows the effect of using EXPO as an offset (i.e., as a multiplier) but 
retaining AVGM. The Minnesota data do not support the retention of AVGM.

Similar tables for Washington State and the combined data sets (Tables 16 and 
17) indicate that LSEG and LADT have coefficients near 1 but still significantly 
different from 1 since the estimated standard errors are small. Also, if EXPO is 
taken as an offset and AVGM is retained, the latter is found to be significant. 
Although other choices could be made, the decision was made to use EXPO as 
an offset and exclude segment length as a separate variable, with the expectation 
that additional effects apparently due to segment length can be represented by 
other highway variables. AVGM was retained in some runs, although, as will be seen, 
it was not significant in the final model.

TABLE 16. Washington Segments, Poisson Models with Exposure Variables

 

Mean No. of Accidents = 3H(365/10^3)Hexp{.1606 + .9121 LSEG + .8918 LADT}

Estimated standard error .0462 .0310 .0299

of coefficient estimates

P-value .0001 .0001 .0001

 

Mean No. of Accidents = EXPO× exp{.1674 - .0269 AVGM}

Estimated standard error .0390 .0059 

of coefficient estimates

P-value .0001 .0001 

1 mile = 1.61 km

TABLE 17. Combined Segments, Poisson Models with Exposure Variables
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Mean No. of Accidents

= (5 or 3)H(365/10^3)Hexp{-.3282 + .9685 LSEG + .9296 LADT + .4450 STATE} 

Estimated standard error .0346 .0206 .0226 .0366

of coefficient estimates

P-value .0001 .0001 .0001 .0001

 

Mean No. of Accidents = EXPO× exp{ -.3405 - .0200 AVGM + .4719 STATE}

Estimated standard error .0291 .0049 .0357

of coefficient estimates

P-value .0001 .0001 .0001 

1 mile = 1.61 km

Lane Width and Shoulder Width

Wider lanes and wider shoulders should lower accidents. If we add these two 
variables to the Poisson models (Table 18), some notable differences are 
found between Minnesota and Washington. The lane width variable is seen to be 
of unexpected sign and insignificant in the Washington data. 

TABLE 18. Poisson Models of Segments with Lane and Surface Width

MINNESOTA

Mean No. of Accidents = EXPO× exp{3.2115 + .0202AVGM - .2501LW - .1183SHW}

Estimated standard .4172 .0089 .0354 .0104

error of coefficient

estimates

P-value .0001 .0222 .0001 .0001 

WASHINGTON

Mean No of Accidents. = EXPO× exp{-.0093 - .0157AVGM + .0461LW - .0759SHW}

Estimated standard .5270 .0063 .0464 .0110 

error of coefficient

estimates

P-value .9860 .0123 .3201 .0001 
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COMBINED

Mean No. of Accidents 

= EXPO× exp{1.5393 - .0079AVGM - .1117LW - .0915SHW + .2850STATE}

Estimated standard .3236 .0050 .0277 .0075 .0606

error of coefficient

estimates

P-value .0001 .1108 .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m

In the last chapter we had already noted anomalies in the correlation 
between accidents and lane or shoulder width in Washington. Several 
factors contribute to this situation. One of them is the direct correlation between 
lane width and shoulder width that occurs in the Washington State data but not 
the Minnesota data. The correlation coefficients are given by:

Lane Width LW versus Shoulder Width 
SHW 

MINNESOTA 

SEGMENTS 

WASHINGTON 
SEGMENTS 

COMBINED

SEGMENTS 

Correlation coefficient -.06313 .11127 .07047 

P-value .1166 .0029 .0101 

 

The P-values are estimated probabilities that the correlation coefficient estimates 
would have the values shown or values farther from zero if there were zero 
correlation between the variables on the populations from which the data sets 
are samples. Minnesota lane widths and shoulder widths have a slight but 
not especially significant negative correlation, while Washington lane widths 
and shoulder widths have a significant positive correlation. This is also reflected 
when we consider univariate statistics for LW, SHW, and TOTWIDTH:

 

State 

Variable Min Max Median Mean 

MN Lane Width LW 10 12 12 11.54 

Shoulder Width SHW 0 12 8 7.08 

TOTWIDTH 20 48 38 37.22 

WA Lane Width LW 9 12 11 11.37 

Shoulder Width SHW 0 10 5 5.01 

TOTWIDTH 18 44 32 32.77 

1 ft = .3048 m

Another relevant fact is the shoulder composition in each State:
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MINNESOTA SHOULDERS WASHINGTON SHOULDERS 

Mixed bituminous 243 39.3%

Gravel or stone 335 54.1%

Composite 34 5.5%

Sod 5 .8% 

Missing 2 .3%

619 100.0% 

asphalt 402 56.5%

bituminous 230 32.3%

gravel 72 10.1%

curb 1 .1%

missing 7 1.0%

712 100.0% 

 

Washington shoulders tend to resemble the road surface more than 
Minnesota shoulders. This suggests the possibility that a more appropriate 
variable than either lane width or shoulder width might be the variable 
TOTWIDTH, total width of road and shoulders. When the shoulder is paved, 
drivers may not make as much of a distinction between it and the road, and 
the combined width may be the only important variable. When variables are 
dependent, it is sometimes useful to replace them with one significant 
combination. Against this it can be argued that lane width and shoulder width 
have different types of effects on accidents and that it is inappropriate to treat them 
as one additive variable. Indeed, in the final models we do not.

Table 19 exhibits some models with only TOTWIDTH. 

TABLE 19. Poisson Models of Segments with TOTWIDTH

MINNESOTA

Mean No. of Accidents = EXPO× exp{1.7994 + .0152AVGM - .0614TOTWIDTH}

Estimated standard .1828 .0087 .0051

error of coefficient

estimates

P-value .0001 .0816 .0001 

WASHINGTON

Mean No. of Accidents = EXPO× exp{1.2141 - .0192AVGM - .0324TOTWIDTH}

Estimated standard .1649 .0061 .0050 

error of coefficient

estimates

P-value .0001 .0015 .0001 
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COMBINED

Mean No .of Accidents 

= EXPO× exp{1.3310 - .0078AVGM - .0464TOTWIDTH + .2853STATE}

Estimated standard .1313 .0050 .0036 .0386

error of coefficient

estimates

P-value .0001 .1191 .0001 .0001 

COMBINED (WITHOUT AVGM)

Mean No. of Accidents = EXPO× exp{1.3480 - .0476TOTWIDTH + .2650STATE}

Estimated standard .1309 .0035 .0365

error of coefficient

estimates

P-value .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m

Comparison of these models with those using LW and SHW suggests that 
replacing LW and SHW by TOTWIDTH plus an adjusted intercept yields 
similar explanatory value. However, because of the importance of these two 
geometric variables and the fact that in principle their values are independent, 
we retain both variables to the extent possible. In a few runs below TOTWIDTH is 
used instead to facilitate comparisons between the two States. 

NOTE: Variables ACCRES = (Number of accidents minus predicted number from 
a Poisson model not using lane width LW) and LWRES = (LW minus predicted 
LW from a regression model using other highway variables) can be developed. 
Their correlation coefficients and associated P-values, not reproduced here, 
confirm that in Minnesota lane width has a significant independent negative effect 
on accident counts while in Washington lane width has an insignificant 
independent positive effect on accident counts.

Horizontal and Vertical Curve Variables

With the exception of the extended negative binomial models, in which 
individual horizontal and vertical curves were modeled, the horizontal variables used 
in this study have been the composites H, HM1, HM1.5, and HM2 and the 
vertical variables have been the composites VC, VM, VMC, and VMCC. All of 
these variables were found to be highly significant. 

The only oddity is shown in Table 20 below and concerns the joint effect of H 
(average horizontal degree of curve) and VC (sum of crest % grade changes 
per hundred feet weighted by relative crest curve lengths). 

In Table 20 the coefficients of the vertical and horizontal variables differ 
substantially between the two States and VC is insignificant in Washington with 
P-value .1854. If one replaces VC by VMC, an alternative measure of crest curves 
that sums the crest % grade changes per hundred feet over all crests and divides 
by segment length, the vertical variable becomes significant and its model 
coefficient stabilizes somewhat (but the horizontal variable H still shows 
dramatic change in its coefficient). See Table 21. There is of course strong 
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correlation between the horizontal and vertical variables in both States.

Segment Variables MINNESOTA WASHINGTON COMBINED 

Horizontal Measure 
H versus Crest 
Measure VC 

Correlation 
coefficient 

.21320 .38635 .33840 

P-value .0001 .0001 .0001 

Horizontal Measure 
H versus Crest 
Measure VMC 

Correlation 
coefficient 

.26423 .36362 .32581 

P-value .0001 .0001 .0001 

 

It is possible that unimportant reweighting is occurring among variables that 
measure essentially 

TABLE 20. Poisson Models of Segments with TOTWIDTH, H, and VC

 

MINNESOTA

Mean No. of Accidents = EXPO× exp{.9330 - .0422TOTWIDTH + .1849H + 1.6051VC}

Estimated standard .1983 .0052 .0248 .2376

error of coefficient

estimates

P-value .0001 .0001 .0001 .0001 

WASHINGTON

Mean No. of Accidents = EXPO× exp{.7692 - .0257TOTWIDTH + .0985H + .2596VC}

Estimated standard .1731 .0051 .0082 .1960 

error of coefficient

estimates

P-value .0001 .00001 .0001 .1854 

COMBINED

Mean No. of Accidents

= EXPO× exp{.9169 - .0385TOTWIDTH + .0954H + .7770VC + .2387STATE}

Estimated standard .1344 .0036 .0077 .1345 .0370

error of coefficient

estimates

P-value .0001 .0001 .0001 .0001 .0001 
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1 mile = 1.61 km, 1 ft = .3048 m

the same thing. In Washington 63.2% of the segments contain crest curves 
versus 83.5% of Minnesota’s. However, the mean values of VC and VMC are higher 
in Washington and their standard deviations are much higher. It is perhaps 
not surprising that there would be differences between Washington and Minnesota 
in the coefficient estimates, but it is surprising that VC and VMC behave differently 
in Washington. VMC roughly measures the number of crests per mile (if one 
assumes that they all have about the same grade change per hundred feet), while 
VC measures the average grade change per hundred feet and assigns zero 
grade change to portions where no crest exists. VMC will be large if there are 
crests with large grade change per hundred feet, but VC will damp these down if 
they occur over short lengths (because they will be weighted by length).

Because vertical and horizontal alignment are in principle independent and both 
are very important, we will retain both. We do this despite the fact that the 
correlation coefficients are considerably larger and more significant than those 
between lane width and shoulder width in Washington (which led us to introduce 
the combined variable TOTWIDTH). But in some runs we replace VC with 

TABLE 21. Poisson Models of Segments with TOTWIDTH, H, and VMC

 

MINNESOTA

Mean No. of Accidents = EXPO× exp{.9039 - .0397TOTWIDTH + .1840H + .0544VMC}

Estimated standard .2027 .0054 .0248 .0081

error of coefficient

estimates

P-value .0001 .0001 .0001 .0001 

WASHINGTON

Mean No. of Accidents = EXPO× exp{.6895 - .0240TOTWIDTH + .0926H + .0395VMC}

Estimated standard .1743 .0051 .0085 .0094 

error of coefficient

estimates

P-value .0001 .00001 .0001 .0001 

COMBINED

Mean No. of Accidents 

= EXPO× exp{.7478 - .0340TOTWIDTH + .0928H + .0538VMC + .2503STATE}

Estimated standard .1373 .0036 .0075 .0059 .0369

error of coefficient

estimates
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P-value .0001 .0001 .0001 .0001 .0001 

1 mile = 1.61 km, 1 ft = .3048 m

VMC. The relationship between the vertical and horizontal measure will 
be reconsidered below when we use the extended negative binomial model, 
which takes into account individual curves on a segment.

Grade, Roadside Hazard Rating, Driveway Density, and Other Variables

Other variables systematically investigated in connection with model 
development include GR (average absolute straight-away grade), RHR 
(Roadside Hazard Rating), DD (driveway density), SPD (speed), T (commercial 
traffic %), and INTD (intersection density). Weather variables (NONDRYP and 
SNP) were also investigated in Minnesota. 

The weather variables can be dismissed at once. Both NONDRYP and SNP 
had negative regression coefficients in models and were not significant. A 
higher percentage of bad weather tends to accompany a decreased number 
of accidents, but the P-values are large. In a few runs SNP is marginally 
significant. Because the weather variable was not local but pertained to a 
large Weather District in the State of Minnesota and because of its 
relative insignificance, it was dropped from the modeling and was not collected 
in Washington State. See Shankar et al. for a study of weather variables in 
Washington State that indicates sufficiently local weather can be significant. 

Among the remaining variables, SPD is not significant in either State nor in 
the combined data set. This may in part reflect lack of variation in the speed data, 
as well as the quality of the speed data (speeds were not collected on some 
segments, but were later reconstructed from HSIS files).

GR is very significant in both States. The other variables are significant in one State 
or the other (but not both) and significant in the modeling of the combined data 
sets. One curiosity is that T has a negative coefficient in Minnesota and is 
not significant, but has a significant positive coefficient in Washington.

The P-values for these variables in Poisson runs on the combined data sets (with 
other variables LW, SHW, H, VC, and STATE; and with EXPO as an offset 
variable) are: 

VARIABLE P-value 

GR .0001 

RHR .0001 

DD .0107 

INTD .0563 

T .0697 

SPD .4118 

 

Next we attempt to include combinations of these variables in a combined 
Poisson model for both States. When this is done, GR and RHR do well, as do GR 
and DD, and GR and T. GR, RHR, and DD do well together (although STATE gets a 
P-value of .1417 in this case); and GR, RHR, and INTD do well together.

Thus it is certainly appropriate to include GR and RHR in the model and at least 
one other variable. INTD measures intersection density. However, 
intersection accidents and intersection-related accidents are excluded from 
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the accident variable in the segment models. For this reason, any effect of INTD will 
be indirect and INTD is not strictly comparable to DD (driveway density). This rules 
out a sum of DD and INTD as a measure. If GR, RHR, DD, and INTD are all included 
in the model, they have the respective P-values .0001, .0001, .0001, and .1863. 
We conclude that INTD does have an independent effect distinct from that of DD, 
but not sufficiently significant to include in the model. 

The situation is similar with the commercial traffic variable T. It appears to be 
significant for the combined data set, but not sufficiently - when other variables 
are present S for inclusion in the model.

Table 22 shows resultant Poisson models for Minnesota and Washington. 
The anomalous behavior of lane width and VC in Washington exhibited in Table 15 
has already been discussed. However, we should note the insignificance of 
Roadside Hazard Rating RHR in Minnesota. An interesting set of correlations 
exists with a bearing on the insignificance of RHR in Minnesota and the 
peculiar behavior of lane width LW in Washington.

Correlation coefficient and  
P-value 

MINNESOTA 
SEGMENTS 

WASHINGTON 
SEGMENTS 

COMBINED 
SEGMENTS 

Lane Width LW versus Roadside 
Hazrat RHR 

-.01141, .7769 .11555, .0020 -.1202, .6613 

Shoulder Width SHW versus Roadside 
Hazrat RHR 

-.23729, .0001 -.14910, .0001 -.33705, .0001 

TOTWIDTH versus 
Roadside Hazrat RHR 

-.23563, .0001 -.11560, .0001 -.32559, .0001 

RHR in Minnesota has a mean of 2.14 and a standard deviation of .97, while 
in Washington its mean is 3.67 and standard deviation 1.57. Roadside Hazard 
Rating is higher and more variable in Washington State. The insignificance of RHR 
in Minnesota in part relates to the absence of variation. The unexpected sign of 
the lane width coefficient in Washington likewise may be in part due to its 
correlation with the quite variable magnitudes of RHR in Washington. When the 
data from the two States are combined, this correlation becomes insignificant and 
the coefficients of LW and RHR both attain more plausible values.

In Table 22 most coefficients for the combined model are intermediate between 
those of the two States. The most prominent anomalies are the negative sign of 
lane width in Washington, the

TABLE 22. Poisson Models for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables

(offset = exposure EXPO) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept 2.0693

(.4371, .0001) 

-.9719

(.5444, .0742) 

.7064

(.3290, .0318) 

AVGM 

(ADT/1,000) 

.0128

(.0090, .1559) 

-.0210

(.0067, .0017) 

-.0112 

(.0052, .0322) 
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Lane Width LW -.1994

(.0359, .0001) 

.0678

(.0480, .1577) 

-.0869

(.0280, .0001) 

Shoulder Width SHW -.0792

(.0111, .0001) 

-.0390

(.0117, .0008) 

-.0599 

(.0078, .0001) 

Roadside Hazard Rating RHR .0044

(.0273, .8706) 

.0650

(.0171, .0001) 

.0703 

(.0141, .0001) 

Driveway Rate DD .0089

(.0033, .0075) 

.0119

(.0023, .0001) 

.0095 

(.0019, .0001) 

Degree of Curve H .1363

(.0283, .0001) 

.0783

(.0099, .0001) 

.0711 

(.0089, .0001) 

Crest VC 1.1905

(.2634, .0001) 

.2090

(.2073, .3135) 

.6843 

(.1455, .0001) 

Absolute Grade GR .2459

(.0598, .0001) 

.0779

(.0234, .0009) 

.1009 

(.0213, .0001) 

State

(MN = 0, WA = 1) 

-- -- .0909 

(.0453, .0447) 

n, p

Dm/(n - p), χ2/(n - p) 

619, 9

1.6827, 1.6596 

712, 9

1.6525, 1.7179 

1331, 10

1.7135, 1.7422 

T1 13.55 12.04 22.71 

R2, P2, R² P .7379, .8890,.8300 .6287, .8138,.7726 .6611, .8610, .7778 

R² W, P² W, R²PW .8300, .8960, .9263 .7641, .8609, .8875 .7886, .8777, .8984 

R²FT, P²FT, R²PFT .6426, .7609, .8446 .5846, .7049, .8293 .5999, .7341, .8172 

TABLE 23. Additional Poisson Models for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables

(offset = exposure EXPO) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept 2.1930

(.4438, .0001) 

.0378

(.2034, .8526) 

.7048

(.3293, .0323) 
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AVGM 

(ADT/1,000) 

-- -.0252

(.0066, .0001) 

-- 

Lane Width LW -.1856

(.0350, .0001) 

TOTWIDTH

-.0135

(.0054, .0116) 

-.0918

(.0281, .0011) 

Shoulder Width SHW -.0757

(.0106, .0001) 

-.0664 

(.0077, .0001) 

Roadside Hazard Rating RHR -- .0726

(.0169, .0001) 

.0662 

(.0143, .0001) 

Driveway Rate DD .0092

(.0033, .0050) 

.0102

(.0024, .0001) 

.0097 

(.0019, .0001) 

Degree of Curve H .1445

(.0278, .0001) 

.0701

(.0101, .0001) 

.0720 

(.0089, .0001) 

Crest VC in MN, Combined;

VMC in WA 

1.2257

(.2567, .0001) 

.0378

(.0101, .0002) 

.6999 

(.1450, .0001) 

Absolute Grade GR .2438

(.0582, .0001) 

.0740

(.0235, .0016) 

.1077 

(.0214, .0001) 

SNP in MN;

T in Combined 

-.8851

(.5938, .1361) 

-- .0070

(.0029, .0153) 

STATE -- -- .0418

(.0448, .3500) 

n, p

Dm/(n - p), χ2/(n - p) 

619, 8

1.6796, 1.6361 

712, 8

1.6396, 1.6774 

1331, 10

1.7126, 1.7592 

T1 14.54 12.04 22.55 

R2, P2, R² P .7297, .8890,.8208 .6279, .8138,.7716 .6607, .8610, .7673 

R² W, P² W, R²PW .8290, .8941, .9272 .7685, .8604, .8932 .7909, .8803, .8985 

R²FT, P²FT, R²PFT .6421, .7609, .8439 .5859, .7049, .8311 .6006, .7341, .8182 

insignificance of Roadside Hazard Rating RHR in Minnesota, and the insignificance 
of the crest variable VC in Washington. 

Table 23 shows a few variant Poisson models with characteristics of special interest. 
In Table 23 the insignificant variables from Table 22 are removed and other 
variables are introduced. In Minnesota AVGM and RHR have been removed, and 
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SNP has been added (P-value = .1361). In Washington TOTWIDTH has replaced 
LW and SHW, and VMC has replaced VC. Also in Table 23 the combined data set 
is presented without AVGM but with the addition of T. The variable T is quite 
significant but STATE loses its significance (P-value = .3500). 

Poisson versus Negative Binomial

For the models in Tables 22 and 23 the values of Dm/(n - p), X2/(n - p), and T1 
are computed, along with several measures of goodness-of-fit. The goodness-of-
fit measures indicate that the models have a good deal of explanatory power. 
However, the other statistics in all cases strongly support the conclusion that the 
data are overdispersed. In particular, the large values of T1 establish this 
decisively. The sources of the overdispersion are presumably segment 
characteristics not included in the model. Some of these characteristics might be 
items not collected (e.g., sight distances, superelevations, local weather) that 
are possible to collect, but others are items well outside the scope of this study (e.
g., driver characteristics). 

Negative binomial models are a natural generalization of the Poisson that 
permit treatment of overdispersion. Such models can be developed with the 
software package LIMDEP or by trial and error with SAS and different choices of 
an overdispersion parameter. The negative binomial also has the advantage of 
lending itself nicely to application of empirical Bayesian techniques when past 
accident data are available at a site. An adjusted model can be developed 
with parameters partly derived from the past data and partly from the given 
negative binomial model. The new model makes use of the old but also allows 
the predictions of the old model to be tempered by actual experience on the 
roadway. See Hauer et al. (1988). 

The phenomena noted in the earlier Poisson models occur in the negative 
binomial setting: dif- ferences between the behavior of AVGM, lane width LW, VC 
and VMC, and RHR from one State to the other; and marginal significance of INTD 
and T. So the analysis is not repeated. In general the estimated coefficients 
of variables are similar to what they were under the Poisson models. However, 
we have an estimate for one additional parameter, the overdispersion parameter K.

Table 24 shows four representative negative binomial models. The 
overdispersion parameters vary from 0.26 to 0.30. Variables that are omitted are 
not significant, and some that are retained are not as well S notably, intercept in 
three of the models, AVGM, and VC in the combined data set (and in Washington, 
not shown). AVGM is not at all significant in Minnesota, not very significant 
in Washington, and intermediate in the combined data set. Lane width has the 
wrong sign in Washington (not shown), and is less significant in the combined data 
set than it was in the Poisson

TABLE 24. Negative Binomial Models for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables

(offset = exposure 
EXPO) 

Minnesota

1985-89 

Washington

1993-95 

Combined Combined 

Variant 

Intercept 1.9456

(.6992, .0054) 

.0358

(.2719, .8953) 

.6883

(.4779, .1492) 

.4733

(.4796, .3356) 

AVGM (ADT/1,000) -- -.0242

(.0137, .0787) 

-.0109 

(.0107, .3067) 

-- 
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Lane Width LW -.1821

(.0573, .0015) 

TOTWIDTH

-.0127

(.0071, .0720) 

-.0857

(.0405, .0343) 

-.0700

(.0404, .0833) 

Shoulder Width SHW -.0800

(.0158, .0001) 

-.0577 

(.0106, .0001) 

-.0569

(.0105, .0001) 

Roadside Hazard Rating 
RHR 

-- .0642

(.0254, .0116) 

.0622 

(.0219, .0046) 

.0609

(.0219, .0055) 

Driveway Rate DD .0079

(.0042, .0630) 

.0100

(.0035, .0045) 

.0091 

(.0027, .0007) 

.0072

(.0026, .0067) 

Degree of Curve H .1421

(.0545, .0092) 

.0735

(.0154, .0001) 

.0856 

(.0126, .0001) 

.0772

(.0140, .0001) 

VC (MN/COM)

VMC (WA/COMV) 

1.0495

(.4964, .0345) 

.0333

(.0168, .0468) 

.3748 

(.2605, .1502) 

.0394

(.0141, .0052) 

Absolute Grade GR .1990

(.0928, .0320) 

.0800

(.0295, .0066) 

.0976 

(.0280, .0005) 

.0941

(.0280, .0008) 

State -- -- .1420 

(.0679, .0366) 

.1427

(.0678, .0353) 

n, p

Dm/(n - p - 1) 

619, 7

1.4938 

712, 8

1.4767 

1331, 10

1.4993 

1331, 9

1.4922 

K .2657

(.0385, .0001) 

.2821

(.0385, .0001) 

.3022

(.0285,.0001) 

.2943

(.0281,.0001) 

R2 K .8609 .8302 .8310 .8354 

R2 .7251 .6268 .6489 .6669 

R2 D, P2 D

R²PD 

.3720, .5607

.6634 

.3455, .5300 

.6518 

.3518, .5464 .6438 .3548,.5477

.6478 

TABLE 25. Negative Binomial Models for Segment Injury Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables

(offset = exposure EXPO) 

Minnesota

1985-89 

Washington

1993-95 

Combined 
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Intercept 1.9998

(.8205, .0148) 

-.2375

(.3511, .4988) 

.1675

(.6108, .7839) 

Lane Width LW -.2458

(.0694, .0004) 

TOTWIDTH

-.0279

(.0089, .0017) 

-.1155

(.0531, .0296) 

Shoulder Width SHW -.1053

(.0212, .0001) 

-.0740 

(.0143, .0001) 

Roadside Hazard Rating 
RHR 

-- .0506

(.0314, .1077) 

.0410 

(.0272, .1315) 

Driveway Rate DD -- .0065

(.0041, .1193) 

.0054 

(.0035, .1192) 

Degree of Curve H .2158

(.0667, .0012) 

.0598

(.0194, .0020) 

.0730 

(.0161, .0001) 

Crest VMC -- .0405

(.0219, .0648) 

.0399 

(.0177, .0239) 

Absolute Grade GR -- .0725

(.0377, .0543) 

.0574 

(.0360, .1109) 

State -- -- .4149 

(.0879, .0001) 

n, p

Dm/(n - p - 1) 

619, 4

1.0702 

712, 7

1.1593 

1331, 9

1.1212 

K  

.2398

(.0786,.0023) 

.2751

(.0682, .0001) 

.2710

(.0518,.0001) 

R2 K .8934 .8444 .8628 

R2 .5859 .4824 .5386 

R2 D, P2 D

R²PD 

.3483, .4468

.7795 

.3185, .4334 

.7348 

.3303, .4399

.7509 

 

runs. The goodness-of-fit measures, including the ordinary R2, yield no 
dramatic conclusions. R2 K is systematically larger than the others. All the 
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measures suggest that the Minnesota coefficients account for Minnesota accidents 
a bit better than the other models.

Table 25 shows negative binomial models for serious accidents, based on the 
variable INJACC. Variables with little significance have been omitted and only 
those that are significant or marginally significant have been retained. The 
Minnesota model, with the fewest variables, once again has the highest goodness-
of-fit. The coefficients are roughly comparable to those for the models for total 
number of accidents (TOTACC). Differences between the deviances Dm and R2 as 
one passes from Table 24 (TOTACC) to Table 25 (INJACC) are not of 
importance. Both measures tend to give smaller values when observed data are 
near zero, and larger values when the observations are away from zero: INJACC 
has small or zero values more often than TOTACC. 

The Extended Negative Binomial

instead of (5.1). With respect to the j-th highway variable, segment number i 
is decomposed into Cij subsegments of relative lengths {wijc : c = 1, ..., Cij} where 
the variables xij take the respective putatively constant values {xijc : c = 1,..., Cij}. 
In effect this model slices up the segments into subsegments where each variable 
is constant. The weights wijc are the relative lengths of the subsegments and add to 
1. The value Cij can be taken to be independent of i (and j) if the maximum number 
of subsegments in the data set is specified: for segments with fewer subsegments 
the extra weights can be set equal to zero. For some variables, all weights except 
one are set to zero, and the model behaves like an ordinary negative binomial 
model with respect to them. 

An advantage of the extended negative binomial model is that it permits local 
variation along a roadway to be taken into account. Rather than summing local 
effects or averaging them, one in effect sums the accidents occurring on 
subsegments where conditions are constant. This givesthe model form a 
scale independence: one may decompose segments into subsegments or 
aggregate adjacent segments without changing model form. 

TABLE 26. Extended Negative Binomial Models for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables (offset = exposure 
EXPO) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept 2.0168

(.6593, .0022) 

.0846

(.2883, .7692) 

.6287

(.4993, .2080) 

AVGM

(ADT/1,000) 

-- -.0239

(.0107, .0252) 

-.0111

(.0897, .2099) 

Lane Width LW -.1843

(.0548, .0008) 

TOTWIDTH

-.0142

-.0829

(.0424, .0504) 
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(.0077, .0669) Shoulder Width SHW -.0812

(.0161, .0001) 

-.0560 

(.0116, .0001) 

Roadside Hazard Rating 
RHR 

-- .0689

(.0245, .0049) 

.0665 

(.0210, .0016) 

Driveway Rate DD .0089

(.0044, .0423) 

.0119

(.0033, .0003) 

.0091 

(.0026, .0005) 

Degrees of Curve 

DEG{i} 

.0474

(.0133, .0003) 

.0521

(.0085, .0001) 

.0445 

(.0078, .0001) 

Crest Curve Rates V{j} .4834

(.1416, .0006) 

-- .4653 

(.1255, .0002) 

Absolute Grades

GR{k} 

.2404

(.0592, .0001) 

.0894

(.0314, .0045) 

.1047 

(.0286, .0003) 

State -- -- .1585 

(.0674, .0188) 

n, p

Dm/(n - p - 1) 

619, 6

1.4980 

712, 7

1.4877 

1331, 10

1.5012 

K  

.2722

(.0457, .0001) 

.3055

(.0460, .0001) 

.3034

(.0331,.0001) 

R2K .8575 .8161 .8303 

R2 .7246 .5720 .6555 

TABLE 27. Final Extended Negative Binomial Model for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables (offset = exposure 
EXPO) 

Combined 

Intercept .6409

(.5008, .2006) 

Lane Width LW -.0846

(.0425, .0465) 
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Shoulder Width SHW -.0591 

(.0114, .0001) 

Roadside Hazard Rating RHR .0668 

(.0211, .0015) 

Driveway Rate DD .0084 

(.0026, .0011) 

Degrees of Curve 

DEG{i} 

.0450 

(.0078, .0001) 

Crest Curve Rates V{j} .4652 

(.1260, .0002) 

Absolute Grades

GR{k} 

.1048 

(.0287, .0003) 

State .1388 

(.0659, .0351) 

n, p

Dm/(n - p - 1) 

1331, 9

1.5012 

K  

.3056

(.0331, .0001) 

R2 K .8291 

R2 .6547 

 

 

TABLE 28. Extended Negative Binomial Models for Segment Injury Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables

(offset = exposure EXPO) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept 1.7147

(.8860, .0530) 

-.1571

(.3657, .6675) 

.3534

(.6546, .5893) 
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Lane Width LW -.2233

(.0735, .0024) 

TOTWIDTH

-.0302

(.0095, .0015) 

-.1306

(.0558, .0193) 

Shoulder Width SHW -.0996

(.0219, .0001) 

-.0784 

(.0150, .0001) 

Roadside Hazard Rating 
RHR 

-- .0568

(.0309, .0659) 

.0598 

(.0261, .0217) 

Driveway Rate DD -- .0085

(.0040, .0349) 

.0062 

(.0034, .0679) 

Degrees of Curve 

DEG{i} 

.0580

(.0116, .0001) 

.0406

(.0107, .0001) 

.0457 

(.0091, .0001) 

Crest Curve Rates V{j} .5528

(.1364, .0001) 

-- .4694 

(.1687, .0054) 

Absolute Grades

GR{k} 

-- .0823

(.0400, .0395) 

-- 

State -- -- .4309 

(.0852, .0001) 

n, p

Dm/(n - p - 1) 

619, 6

1.0763 

712, 6 

1.3009 

1331, 9

1.1308 

K  

.2482

(.0751, .0010) 

.2951

(.0699, .0001) 

.2880

(.0523,.0001) 

R2 K .8899 .8320 .8542 

R2 .5926 .4750 .5277 

 

As with the negative binomial the goal is to estimate the coefficient vector and 
the overdispersion parameter K. Shaw-Pin Miaou made available a program that 
uses maximum likelihood to estimate these quantities. In Table 26 we show the 
results of the modeling.

In Table 26 AVGM and Roadside Hazard Rating RHR are strongly insignificant 
in Minnesota and so were removed. In Washington the crest variable V{j}, 
although having the correct sign, is strongly insignificant in the presence of the 
other variables and so was removed. In the combined data set AVGM (and 
the Intercept variable) are insignificant. When AVGM was removed and the 
commercial percentage variable T added, the estimated coefficient for T was 
positive but had a significance level of about 20%. When the speed variable SPD 
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is added instead, it has a negative coefficient and a P-value of 50%.

Table 27 represents our final model for segments. It contains a large number 
of variables, all of them significant, and it represents the combined characteristics 
of rural segments in two States with a reasonable amount of variation in all variables.

Table 28 shows three extended negative binomial models for Injury Accidents. 
AVGM was insignificant in all three data sets. RHR and DD were insignificant 
in Minnesota. The straightaway grade variable GR{k} was not significant in 
Minnesota, and the crest vertical V{j} was not significant in Washington. 
Extended negative binomial runs with all variables present did not converge in 
the combined data set, but did when GR{k} was removed. A total of 36% of all 
reported segment accidents were Injury Accidents in Minnesota versus 46% 
in Washington, and this is reflected by the increase in the coefficient for State 
from Table 27 to Table 28.
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5. Modeling

Intersection Models

Models for the three-legged and four-legged intersections in Minnesota and 
Washington are of Poisson and negative binomial type. Extended negative 
binomial models, appropriate for nonhomogeneous and variable stretches of road, 
are not attempted. The variables used to model accidents describe traffic volumes, 
horizontal and vertical alignment, channelization, roadside (driveways and hazard 
rating), intersection angle, and posted speed. Although sight distance is a desirable 
variable, data were not available. The alignment variables and hazard rating can be 
viewed as partial surrogates for sight distance. 

Because the intersection models are based on fewer observations than the 
segment models, and the relationships revealed between accidents and 
intersection variables are less clear-cut, some adjustments are made in the criteria 
for retaining variables in the models. In order to identify design variables that 
influence accidents and are subject to control of designers, in many of the models 
P-values are allowed much greater range than in the segment models. Values as 
high as 30% occur in some models. 

To some extent this represents a shift in methodology. For a P-value of 5%, under 
the null hypothesis that a particular variable has no influence and thus has zero as 
its true coefficient, there is one chance in 20 that the estimate for the coefficient will 
be as far away from zero as, or farther away than, it is found to be. With a P-value 
of 30%, under the null hypothesis there are three chances in 10 that the estimate 
will be as far from zero as, or farther than, the actual estimate. The estimated 
coefficient is viewed as a fluctuation from zero due to random errors in the data. 
However, there is no compelling reason why the null hypothesis should govern the 
analysis, especially when engineering judgment suggests that the variable under 
study has an influence on accident counts. A defensible alternative is to view the 
estimated coefficient arrived at by maximum likelihood methods as a "best guess" 
whose confidence interval is measured by the standard error of the estimate. 
Larger P-values correspond to larger confidence intervals, perhaps intervals that 
include zero, but the estimate itself summarizes the data better than assignment of 
a zero coefficient and removal of the variable from the model. Adopting the "best 
guess" viewpoint is a more aggressive, less conservative stance toward the 
investigation of the underlying reality. Permitting larger P-values may be thought of 
as a partial transition toward the latter stance: we still show some deference toward 
the null hypothesis, but we attend closely to the estimate offered by the model, 
more closely the smaller its standard error.

Tables 29 through 35 below exhibit the chief models of both Poisson and negative 
binomial type for both the three-legged and four-legged intersections. For 
comparability, number of years is used as an offset so that what is modeled is 
mean number of accidents per year. Estimated coefficients for each variable are 
shown, along with their standard errors and P-values. Some variables were 
considered in the preliminary analysis that may not appear in the Tables - variants 
of the variables used here, as well as weather variables SNP and NONDRYP in 
Minnesota (these had negative sign and were not very significant). Tables 36 and 
37 exhibit models for Injury Accidents.
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Traffic 

The chief variables are major and minor road traffic S ADT1 and ADT2. In addition 
the variable CINDEX, conflict index, measuring the relationship between these two 
was considered. In pre- liminary runs it was not significant when used in addition to 
them, and it was less significant than either of them when used as a substitute for 
one of them. ADT1 and ADT2 have different relative effects in the three-legged 
versus the four-legged cases (cf. Table 35):

For four-legged intersections, major and minor road ADT have approximately equal 
influence, while for three-leggeds the major road ADT dominates. If one views a 
four-legged intersection as two three-legged intersections, admittedly an 
oversimplification, and accordingly halves the coefficient of LADT2 in the last 
column above, the effects are seen to be roughly compatible. 

TABLE 29. Poisson Models, 3-Legged Intersections Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables 
(Offset = 
number 
of years) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept -12.5714

(.8238, .0001) 

-10.4414

(1.5325, .0001) 

-12.1055

(.8241, .0001) 

Log of 
ADT1 

.8524

(.0560, .0001) 

.6569

(.1386, .0001) 

.8291

(.0511, .0001) 

Log of 
ADT2 

.4466

(.0461, .0001) 

.5219

(.0628, .0001) 

.4578

(.0367, .0001) 

VCI

(crests) 

.3313

(.1301, .0109) 

-.2430

(.1554, .1180) 

-.0010

(.0957, .9915) 

HI .0473

(.0141, .0008) 

-.0018

(.0260, .9458) 

.0333

(.0124, .0073) 
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SPDI .0190

(.0101, .0597) 

.0062

(.0146, .6731) 

.0151

(.0083, .0687) 

Roadside 
Hazard 
Rating 
RHRI 

.1788

(.0554, .0012) 

.0995

(.0749, .1842) 

.1712

(.0431, .0001) 

No. 
Drwys 
ND 

-.0441

(.0306, .1498) 

-.0342

(.0426, .4215) 

-.0436

(.0241, .0710) 

Right 
Turn 
Lane RT 

.2684

(.1068, .0119) 

.1472

(.1814 .4172) 

.2554

(.0909, .0050) 

Angle 
HAU 

.0060

(.0016, .0002) 

-.0073

(.0100, .4620) 

.0052

(.0016, .0008) 

State

(MN = 0, 
WA = 1) 

-- -- -.2497

(.1071, .0198) 

n, p

Dm/(n - 
p), χ2/(n 
- p) 

389, 10

1.5388, 1.8818 

181, 10

1.5867, 1.5900 

570, 11

1.5554, 1.8344 

T1 18.25 7.38 21.22 

R2, P2, 
R2 P 

.4653, .8375, .5556 .3298, .6844, .4819 .4203, .8147, .5159 

R2 W, P2 

W, R2 PW 

.6413, .8044, .7973 .5094, .6734, .7564 .5898, .7720, .7640 

RFT2, 

PFT2, 

R2PFT 

.4722, .5568, .8481 .2702, .4090, .6606 .4130, .5206, .7933 
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TABLE 30. Poisson Models, 4-Legged Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables 
(Offset = 
number 
of years) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept -10.5546

(.8711, .0001) 

-10.7648

(1.4384, .0001) 

-11.6312

(.8283, .0001) 

Log of 
ADT1 

.6517

(.0626, .0001) 

.3710

(.1384, .0073) 

.6064

(.0556, .0001) 

Log of 
ADT2 

.6089

(.0520, .0001) 

.7934

(.0835, .0001) 

.6739

(.0427, .0001) 

VCI

(crests) 

.3805

(.1090, .0005) 

-.0064

(.1171, .9565) 

.2280

(.0777, .0033) 

HI .0334

(.0363, .3578) 

-.4329

(.1188, .0003) 

.0114

(.0308, .7106) 

SPDI .0166

(.0134, .2156) 

.0630

(.0132, .0001) 

.0415

(.0090, .0001) 

Roadside 
Hazard 
Rating 
RHRI 

-.0425

(.0508, .4026) 

-.2050

(.0740, .0056) 

-.0994

(.0411, .0156) 

No. 
Drwys 
ND 

.1165

(.0316, .0002) 

.0546

(.0472, .2472) 

.0919

(.0258, .0004) 

Right 
Turn 
Lanes 
RT 

-.0803

(.1119, .4736) 

-.7261

(.1599 .0001) 

-.2323

(.0886, .0087) 
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Angle 
HAU 

-.0044

(.0024, .0701) 

.0309

(.0079, .0001) 

-.0016

(.0023, .4966) 

State

(MN = 0, 
WA = 1) 

-- -- -.0629

(.1038, .5447) 

n, p

Dm/(n - 
p), χ2/(n 
- p) 

327, 10

1.3371, 1.3665 

90, 10

3.1285, 2.8507 

417, 11

1.8524, 1.8106 

T1 3.71 11.05 14.97 

R2, P2, 
R2 P 

.6057, .7288, .8311 .4513, .8374, .5389 .4556, .7868, .5791 

R2 W, P2 

W, R2 PW 

.5635, .6705, .8404 .7564, .9039, .8369 .5695, .7558, .7535 

RFT2, 

PFT2, 
R²FT 

.4807, .5081, .9460 .3813, .7792, .4894 .3700, .6183, .5985 

TABLE 31. Negative Binomial Models, 3-Legged Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables

(Offset = number of 
years) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept -12.8114

(1.2566, .0001) 

-11.3859

(2.8742, .0003) 

-12.3250

(1.1872, .0001) 

Log of ADT1 .8090

(.0658, .0001) 

.7490

(.2492, .0027) 

.8073

(.0632, .0001) 
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Log of ADT2 .5055

(.0715, .0001) 

.5211

(.1022 .0001) 

.5027

(.0561, .0001) 

VCI

(crests) 

.2915

(.3025, .3353) 

-.2115

(.2409, .3798) 

.0758

(.1327, .5682) 

HI .0351

(.0334, .2935) 

.0175

(.0527, .7399) 

.0270

(.0250, .2800) 

SPDI .0253

(.0188, .1780) 

.0100

(.0281, .7218) 

.0188

(.0141, .1837) 

Roadside Hazard 
Rating RHRI 

.1653

(.0683, .0156) 

.0681

(.1230, .5798) 

.1372

(.0584, .0188) 

No. Drwys ND -.0293

(.0479, .5405) 

-.0208

(.0756, .7835) 

-.0270

(.0399, .4977) 

Right Turn Lane RT .2578

(.1402, .0660) 

.1765

(.3598, .6238) 

.2442

(.1265, .0537) 

Angle HAU .0047

(.0032, .1444) 

-.0069

(.0242, .7736) 

.0040

(.0033, .2355) 

State

(MN = 0, WA = 1) 

-- -- -.1994

(.1578, .2064) 

n, p

Dm/(n - p – 1) 

389, 10

1.2959 

181, 10

1.3731 

570, 11

1.3277 

K

R2 K 

.4759
(.1001,.0001)

.7828 

.7927
(.3180,.0127)

.6450 

.5794
(.0955,.0001) 

.7390 

R2 .4452 .3022 .4057 
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R2 D, P2 D

R²PD 

.2878, .4585

.6278 

.1751, .3919 

.4468 

.2609, .4463

.5847 

TABLE 32. Negative Binomial Models, 4-Legged Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables

(Offset = number of 
years) 

Minnesota

1985-89 

Washington

1993-95 

Combined 

Intercept -10.6729

(1.3603, .0001) 

-10.9301

(3.7629, .0038) 

-11.4840

(1.5737, .0001) 

Log of ADT1 .6179

(.0847, .0001) 

.3681

(.3828, .3364) 

.5773

(.0985, .0001) 

Log of ADT2 .6262

(.0730, .0001) 

.9218

(.2280, .0001) 

.6944

(.0795, .0001) 

VCI

(crests) 

.3121

(.2490, .2101) 

.0484

(.6446, .9401) 

.2681

(.2147, .2118) 

HI .0441

(.0482, .3605) 

-.3381

(.2142, .1144) 

.0359

(.0477, .4519) 

SPDI .0222

(.0189, .2407) 

.0507

(.0274, .0644) 

.0399

(.0150, .0080) 

Roadside Hazard 
Rating RHRI 

-.0628

(.0579, .2786) 

-.1997

(.1702, .2406) 

-.1175

(.0587, .0454) 

No. Drwys ND .1295

(.0513, .0116) 

-.0023

(.1316, .9858) 

.1056

(.0501, .0351) 
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Right Turn Lanes RT -.0557

(.1266, .6601) 

-.7191

(.4662 .1230) 

-.1627

(.1407, .2474) 

Angle HAU -.0052

(.0033, .1169) 

.0384

(.0154, .0127) 

-.0023

(.0039, .5534) 

State

(MN = 0, WA = 1) 

-- -- .0094

(.1814, .9588) 

n, p

Dm/(n - p – 1) 

327, 10

1.2920 

90, 10

2.1620 

417, 11

1.5457 

K

R2 K 

.2044
(.0670,.0023)

.8344 

.9466
(.2828, .0008)

.6051 

.5219 
(.0849,.0001)

.7187 

R2 .5882 .3366 .4313 

R2 D ,P2 D

R²PD 

.2981, .4052

.7357 

.1197, .5290 

.2262 

.2653, .4799

.5529 

TABLE 33. Additional Negative Binomial Models, 

Combined (MN/WA) Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = no. of 
years) 

Combined 3-legged Combined 4-
legged 

Intercept -12.4698

(1.1151, .0001) 

-11.0804

(1.5718, .0001) 

Log of ADT1 .8046

(.0615, .0001) 

.5834

(.0985, .0001) 

http://www.tfhrc.gov/safety/98133/ch05/ch05_03.html (8 of 21) [19/03/2008 11.32.46]



Intersection Models

Log of ADT2 .5002

(.0552, .0001) 

.6839

(.0769 .0001) 

VCI

(crests) 

-- .2714

(.2017, .1785) 

HI .0280

(.0248, .2587) 

-- 

SPDI .0216

(.0132, .1034) 

.0298

(.0149, .0448) 

Roadside Hazard Rating RHRI .1412

(.0578, .0145) 

-- 

No. Drwys ND -- .0888

(.0524, .0899) 

Right Turn Lane RT .2461

(.1266, .0519) 

-.1586

(.1390, .2538) 

Angle (HAU for 3-leggeds, DEV 
for 4-leggeds) 

.0037

(.0033, .2681) 

-.0059

(.0047, .2190) 

State

(MN = 0, WA = 1) 

-.2068

(.1574, .1890) 

-.1335

(.1729, .4399) 

n, p

Dm/(n – p - 1) 

570, 9

1.3243 

417, 9

1.5448 

K

R2 K 

.5826(.0938, .0001)

.7376 

.5281(.0832,.0001)

.7154 

R2 .4016 .4511 
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R2 D , P2 D

R²PD 

.2628, .4484

.5862 

.2658, .4811 

.5524 

TABLE 34. Additional Negative Binomial Models, Minnesota Intersection 
Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables

(Offset = number of 
years) 

Minnesota, 
three-legged, 
1985-89 

Minnesota, 
four-legged, 
1985-89 

Minnesota, 
four-legged, 
1985-89 

Intercept -11.2798

(.6343, .0001) 

-9.5860

(.7397, .0001) 

-9.4267

(.7632, .0001) 

Log of ADT1 .7923

(.0619, .0001) 

.6568

(.0829, .0001) 

.6334

(.0881, .0001) 

Log of ADT2 .4920

(.0683, .0001) 

.5882

(.0691 .0001) 

.6116

(.0695, .0001) 

VCI

(crests) 

-- .3499

(.1931, .0699) 

-- 

HI -- -- .0719

(.0308, .0195) 

Roadside Hazard 
Rating RHRI 

.1944

(.0666, .0035) 

-- -- 

No. Drwys ND -- .1088

(.0459, .0177) 

-- 

Right Turn Lane RT .2822

(.1375, .0402) 

-- -- 
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Angle DEV -- -.0105

(.0042, .0120) 

-.0111

(.0042, .0083) 

n, p

Dm/(n - p – 1) 

389, 5

1.3316 

327, 6

1.2690 

327, 5

1.2995 

K

R2 K 

.5377
(.1024,.0001)

.7546 

.1854
(.0611,.0024)

.8498 

.2293 
(.0700,.0011)

.8143 

R2 .3955 .6208 .5869 

R2 D , P2 D

R²PD 

.2828, .4630

.6109 

.3107, .4116 

.7548 

.2941, .4115

.7146 

 

TABLE 35. Final Negative Binomial Models, Minnesota Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables

(Offset = number of years) 

MN 3-leggeds, 
1985-89 

MN 4-leggeds, 1985-
89 

Intercept -12.9922

(1.1511, .0001) 

-10.4260

(1.3167, .0001) 

Log of ADT1 .8052

(.0639, .0001) 

.6026

(.0836, .0001) 

Log of ADT2 .5037

(.0708, .0001) 

.6091

(.0694 .0001) 

VCI

(crests) 

.2901

(.2935, .3229) 

.2885

(.2576, .2628) 
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HI .0339

(.0327, .3004) 

.0449

(.0473, .3431) 

SPDI .0285

(.0177, .1072) 

.0187

(.0176, .2875) 

Roadside Hazard Rating 
RHRI 

.1726

(.0677, .0108) 

-- 

No. Drwys ND -- .1235

(.0519, .0173) 

Right Turn Lane RT .2671

(.1398, .0561) 

-- 

Angle HAU .0045

(.0032, .1578) 

-.0049

(.0033, .1341) 

n, p

Dm/(n - p - 1) 

389, 9

1.3200 

327, 8

1.2874 

K

R2 K 

.4811(.0998,.0001)

.7805 

.2055(.0652,.0016)

.8336 

R2 .4409 .5944 

R2 D , P2 D

R²PD 

.2891, .4604

.6279 

.3005, .4081 

.7364 

 

TABLE 36. Negative Binomial Models, 3-Legged Intersection Injury Accidents

Regression Coefficients (Standard error and P-value in parentheses)
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Variables (Offset = 
no. of years) 

Minnesota 
1985-9 

Washington 
1993-5 

Combined 

Intercept -13.0374

(1.7908, .0001) 

-13.8430

(3.2641, .0001) 

-12.9939

(1.6299, .0001) 

Log of ADT1 .8122

(.0973, .0001) 

.9037

(.2915, .0019) 

.8357

(.0878, .0001) 

Log of ADT2 .4551

(.0977, .0001) 

.5445

(.1314 .0001) 

.4840

(.0721, .0001) 

VCI

(crests) 

.1869

(.3657, .6092) 

-.1000

(.2787, .7196) 

.0247

(.1773, .8893) 

HI .0335

(.0327, .3047) 

-.0063

(.0739, .9316) 

.0179

(.0294, .5424) 

SPDI .0156

(.0269, .5618) 

.0165

(.0331, .6173) 

.0125

(.0197, .5248) 

Roadside Hazard 
Rating RHRI 

.2065

(.0930, .0263) 

-.0002

(.1505, .9990) 

.1300

(.0757, .0858) 

No. Drwys ND -.0120

(.0714, .8671) 

.0293

(.0840, .7276) 

-.0044

(.0525, .9331) 

Right Turn Lane RT .3620

(.1814, .0460) 

.1647

(.4034, .6830) 

.2957

(.1590, .0629) 

Angle HAU .0051

(.0045, .2594) 

.0016

(.0412, .9692) 

.0046

(.0048, .3384) 

State

(MN = 0, WA = 1) 

-- -- -.1299

(.1924, .4996) 

http://www.tfhrc.gov/safety/98133/ch05/ch05_03.html (13 of 21) [19/03/2008 11.32.46]



Intersection Models

n, p

Dm/(n - p - 1) 

389, 10

.9799 

181, 10

.9546 

570, 11

.9625 

K

R2 K 

.4935
(.1818,.0066)

.8208 

.8166
(.4144,.0488)

.6500 

.6219 
(.1693,.0002)

.7674 

R2 .4149 .1251 .3481 

R2 D , P2 D

R²PD 

.2520, .3687

.6835 

.1917, .3126 

.6134 

.2441, .3601

.6778 

 

TABLE 37. Negative Binomial Models, 4-Legged Intersection Injury Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = 
no. of years) 

Minnesota 
1985-9 

Washington 
1993-5 

Combined 

Intercept -10.7829

(1.7656, .0001) 

-12.5872

(4.5643, .0059) 

-12.0196

(1.9399, .0001) 

Log of ADT1 .6339

(.1055, .0001) 

.4738

(.4945, .3380) 

.5963

(.1187, .0001) 

Log of ADT2 .6229

(.0870, .0001) 

.9085

(.2459, .0002) 

.6945

(.0947, .0001) 

VCI

(crests) 

.2789

(.4623, .5464) 

.1074

(.6848, .8754) 

.2824

(.3469, .4156) 

HI .0729

(.0635, .2513) 

-.6484

(.3838, .0911) 

.0506

(.0637, .4264) 
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SPDI .0112

(.0251, .6567) 

.0651

(.0316, .0395) 

.0377

(.0195, .0532) 

Roadside Hazard 
Rating RHRI 

-.1225

(.0720, .0889) 

-.3189

(.2123, .1332) 

-.2116

(.0762, .0055) 

No. Drwys ND .0857

(.0639, .1799) 

.0303

(.1525, .8425) 

.0900

(.0657, .1707) 

Right Turn Lanes RT .0451

(.1665, .7865) 

-.9153

(.5273 .0826) 

-.1273

(.1798, .4790) 

Angle HAU -.0043

(.0044, .3258) 

.0360

(.0157, .0220) 

-.0018

(.0052, .7339) 

State

(MN = 0, WA = 1) 

-- -- .2487

(.2321, .2839) 

n, p

Dm/(n - p - 1) 

327, 10

1.1051 

90, 10

1.8042 

417, 11

1.2989 

K

R2 K 

.1811
(.1173,.1224)

.8870 

.9692
(.3751,.0098)

.6431 

.6589 
(.1499,.0001)

.7470 

R2 .4929 .2139 .3420 

R2 D , P2 D

R²PD 

.2414, .3316

.7279 

.1472, .4844 

.3040 

.2404, .4186

.5744 

 

Alignment, Channelization, and Speed

Two horizontal curve variables were used - HI and HEI - measuring degree of 
curvature out to 250 respectively 764 feet. These variables had unexpected sign 
and/or were insignificant in Washington State (for HI, see Tables 29, 30, 31, 32, 36, 
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37) but behaved somewhat better in Minnesota for both three-legged and four-
legged intersections. HI was more stable than HEI, and so for comparability we 
elected to use HI as our horizontal variable in the runs shown. 

Three vertical curve variables were considered - VCI, VI, and VEI. Each measures 
average grade change per hundred feet for vertical curves near the intersection. 
The first is for crests out to 250 feet, the second is for both crests and sags out to 
250 feet, and the third is for both crests and sags out to 764 feet. In the Minnesota 
data - the larger of the two State data sets - VCI, the crest only variable and the 
vertical alignment variable most closely related to sight distance, was substantially 
more significant than VI and VEI, and hence was selected for inclusion in the runs 
presented here. On the Washington data the vertical curve variables tended to 
have unexpected sign and/or be very insignificant.

Several measures of channelization were used in the modeling, but the measure 
that proved most significant was RT, which takes the values 1 or 0 whether there is 
or is not at least one right turn lane on the major road. Other channelization 
variables - for bypass lanes on three-leggeds, zero, one, or two right turn lanes on 
four-leggeds, or acceleration lanes for the minor roads - were not significant and/or 
did not show much variation. Thus RT represents channelization in all runs. On 
three-legged intersections its coefficient was consistently positive and significant. It 
is not known whether this variable is a surrogate for high accident intersections (i.
e., because many accidents tend to occur at the intersection, a right turn lane has 
been added) or a surrogate for high right turn major road traffic (and high left turn 
minor road traffic). On the four-legged intersections, the coefficient of RT tended to 
be negative but was not particularly significant.

The speed variable SPDI, an average of approach speeds - although negatively 
correlated with ADT, the alignment variables, and number of driveways - seemed 
to make an independent contribution to the accident frequency in all models.

Roadside Variables - Number of Driveways and Hazard Rating

Perhaps the most remarkable feature of the intersection models is the unexpected 
but systematic behavior of the variables ND, number of driveways, and RHRI, 
Roadside Hazard Rating. The coefficient of RHRI is positive at three-legged 
intersections while that of ND is negative. The reverse occurs on four-leggeds: the 
coefficient of RHRI is negative and that of ND is positive. Because of the 
unexpected negative signs, ND has been omitted from some three-legged runs and 
RHRI has been omitted from some four-legged runs. 

With respect to driveways, perhaps drivers take more care when driveways are to 
be found in the neighborhood of a three-legged intersection, but insufficient 
additional care in the neighborhood of a four-legged intersection. Each driveway or 
intersection leg represents potential traffic and requires a share of driver attention. 
In the intersection data sets driveways actually occur at a larger percentage of 
three-legged intersections (62.5% in MN and 63% in WA according to Tables 4 and 
5) than four-leggeds (32.4% in MN and 46.7% in WA according to Tables 6 and 7). 
At four-legged intersections, it might be argued that driveways are a third 
unexpected complication in addition to the two minor road legs, less easily 
integrated than two complications at a three-legged: a driveway and one minor leg.
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With respect to hazard rating, an opposite and possibly inconsistent explanation 
might be offered: It may be that drivers underestimate roadside hazards at three-
leggeds and relatively speaking overestimate them at four-leggeds. Roadside 
hazards such as obstacles and steep sideslope do not require the same kind of 
attention as potential traffic entry points. Perhaps such hazards are more likely to 
be properly attended to when both sides of the roadway have entry points and 
available accident avoidance tactics are more limited.

The Angle Variable

The variable HAU used in Tables 29 through 33 and 35 through 37 is a signed 
variable proposed by Ezra Hauer (see Figures 4 and 5). For a three-legged 
intersection HAU is positive when the angle is larger than 90º as in 4(a) and HAU is 
negative when the angle is smaller than 90º as in 4(b). On the basis of work of 
Kulmala (1995) it is thought that turns from the far lane of the major road may be 
less accident prone in situation 4(a) than in situation 4(b). Accordingly the 
coefficient of HAU in the three-legged intersection model would be negative (when 
HAU is positive accidents are less frequent; and when HAU is negative they are 
more frequent, it is proposed). Of course, there are other turns to be made: a turn 
from the near lane of the major road, and turns left and right from the minor road. 
The four-legged version of HAU is the average of the HAU variable for two three-
legged intersections (one to the right, one to the left), and would likewise have a 
negative coefficient if accidents owing to far lane turns through large angles are 
predominant. 

Tables 29 through 32 do not support any strong conclusion. Minnesota and 
Washington have opposite experience with the variable HAU. Minnesota angle 
data must be considered much more reliable, though, than Washington angle data. 
While Minnesota angles were determined from construction plans, those for 
Washington were very rough estimates made from photologs. Visibility of the 
direction of minor roads was extremely limited in the photologs. As Tables 4 
through 7 indicate, for Minnesota three-leggeds 50.6% were reported as right 
angles versus 95.6% in Washington; for four-leggeds 37.6% were reported as right 
angles in Minnesota versus 88.9% in Washington. In the Minnesota Poisson 
models HAU is significant but the sign of its coefficient has unexpected value 
(positive) for the three-leggeds, although it behaves as expected for four-leggeds. 
Under the negative binomial models HAU is marginally significant for the 
Minnesota data with the same coefficient signs as for the Poisson.

The two other angle variables considered in this study are DEV (the absolute 
deviation from 90º of the angle, or the average of the two absolute deviations for 
the four-leggeds) and DEV15 (the squared difference between DEV and 15º, 
divided by 100). The behavior of these three variables on the Minnesota data is 
summarized below.

 

Accident Models for Minnesota 
three-legged intersections with 
ADT1 and ADT2 and one of the 
variables at right. 

 

VARIABLE 

Poisson 
Model 

Negative 
Binomial 
Model 

DEV .4906, 
+ 

.9955 , + 
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P-values and signs of the 
estimated coefficients of the 
variable.

DEV15 .4395, 
+ 

.9248, - 

HAU .0006, 
+ 

.2391, + 

 

Accident Models for Minnesota 
four-legged intersections with 
ADT1 and ADT2 and one of the 
variables at right. 

P-values and signs of the 
estimated coefficients of the 
variable.

 

VARIABLE 

Poisson 
Model 

Negative 
Binomial 
Model 

DEV .0014, - .0139, - 

DEV15 .0071, - .0648, - 

HAU .0748, - .1419, - 

Thus angle, however measured, is a significant variable at four-legged 
intersections, and HAU is significant (but the others are not) at three-leggeds. 

DEV15 is an empirical variable developed in connection with study of the four-
legged intersections. On some runs of Minnesota four-legged data it was more 
significant than DEV, suggesting that accident rates are highest at angles of 75º 
and 105º. It was also more significant than DEV on the combined Minnesota and 
Washington four-legged data. For reasons of simplicity we omit DEV15 from our 
tables, although we did use DEV on some four-legged runs (Tables 33 and 34). 

Negative Binomial Models - Minnesota versus Washington

The statistics compiled in the lower rows of Tables 29 and 30 indicate that the 
Poisson models have definite explanatory power, especially the Minnesota models, 
but that they are nonetheless overdispersed. The values of T1 should be 
approximately normally distributed about zero if the overdispersion parameter is 
zero, but the values instead tend to be large positive numbers. The scaled 
deviance and the scaled Pearson chi-square likewise have values indicative of 
overdispersion. Accordingly we pass to negative binomial models in Tables 31 
through 37. 

Tables 31 and 32 are negative binomial counterparts of Tables 29 and 30, with the 
same variables. In general the Poisson and negative binomial models are 
consistent with one another: coefficients have the same sign and similar 
magnitudes. In most cases the P-value of coefficients increases, the individual 
variables are thus less significant, and the overdispersion parameter K, a stand-in 
for omitted variables, makes a significant contribution to all of the negative binomial 
models. In Washington the overdispersion parameters are larger than in 
Minnesota, and fewer variables are significant.
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In particular, for the Washington three-legged models the marginally significant 
variables VCI and RHRI become insignificant as one passes from the Poisson 
model in Table 29 to the negative binomial model in Table 31. For the Washington 
four-legged models the variables ADT1, HI, SPDI, RHRI, and RT become less 
significant from Table 30 to Table 32, with ADT1 and RHRI becoming insignificant. 
Because it is well-accepted that ADT1 is an important variable, the quality of the 
data is called into question. The standard error for ADT1 is consistent with both a 
zero value and a much larger value (comparable to that of Minnesota).

For all intersections in this study, the traffic data are imperfect. In rural sites they 
typically are based on spot measurements (part of a day at a site along the road 
near the intersection). Although efforts are made to average the data, with daily, 
weekly, seasonal, and annual variation taken into account, and with attempts to 
localize the count to the vicinity of the intersection, the results are not very reliable. 
Examination of files for both Minnesota and Washington shows that reported ADT 
for rural intersections is often the same from year to year (with no evidence that 
new measurements have been made or that paper estimates have been revised). 
When traffic data are available for all legs, sometimes they do not make sense: the 
difference in ADT between the two legs of the major road has no obvious relation 
to the minor road ADT. Efforts were made in this study to correct imperfections in 
the Minnesota intersection ADT, but because the Washington data were not part of 
an established data base, no similar efforts could be made with them. 

The Minnesota models are thus more trustworthy. Nonetheless, models for both 
sets of data, and for combined data, are included for comparison purposes. Where 
there is disagreement between Minnesota and Washington, the relevant variable 
should receive extra scrutiny and the evidence of Minnesota should be considered 
less conclusive than otherwise.

Additional Negative Binomial Runs

In Tables 33, 34, and 35 we exhibit additional negative binomial models for 
Minnesota and combined data. 

Table 33 shows combined data for both States with variables that are significant or 
reasonably close to significant in the "best guess" spirit. For the three-leggeds, 
compare Table 33 with the last column in Table 31: VCI and ND have been 
omitted. Both are very insignificant and ND has unexpected sign (more driveways 
lead to fewer accidents). For the four-leggeds, compare Table 33 with the last 
column of Table 32: HI is very insignificant and has been omitted; RHRI, although 
significant, has unexpected sign (the more hazardous the roadside the fewer the 
accidents) and has also been omitted. The State variable is not significant in any of 
these runs, but has been retained nonetheless.

Table 34 shows Minnesota negative binomial runs where all but the most 
significant variables have been omitted. The results for the Minnesota three-
leggeds are quite consistent with the Minnesota column of Table 31. For the four-
leggeds either horizontal or vertical alignment can serve as significant explanatory 
variables but not both. Angular deviation DEV from 90º is also strongly significant; 
the fewer predicted accidents the greater the deviation. The runs in Table 34 keep 
only the most significant variables. Note that SPDI is not one of them; nor is HAU 
(but angle is represented by DEV).
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Negative Binomial Models for Injury Accidents

We also exhibit negative binomial models for injury accidents (INJACC) in Tables 
36 and 37. These tables are comparable to Tables 31 and 32 and show that the 
same coefficient magnitudes generally are to be found, although with reduced 
significance.

With respect to the three-legged INJACC runs, the most significant variables 
besides ADT are Roadside Hazard Rating RHRI and channelization RT (in 
Minnesota and the combined data). This is similar to Table 31 where all accidents 
(TOTACC) are modeled.

With respect to the four-legged INJACC runs, RHRI is again significant but with 
unexpected sign, and this mirrors the behavior in Table 32 and elsewhere.

Final Intersection Models

The chief idiosyncrasies found in the various models are already present in the 
Poisson runs (Tables 29 and 30). We list some of these:

• driveways seem to decrease accidents at three-legged intersections;

• roadside hazards seem to decrease accidents at four-legged intersections;

• a major road right turn lane seems to increase accidents at three-legged 
intersections;

• the angle effect is variable from State to State and from three-legged to four-
legged intersections;

• Washington coefficients are somewhat erratic in sign and the coefficient of ADT1 
in the four-legged model is rather small relative to that of ADT2; and

• Washington models have lower R2 values than the Minnesota models, and the 
combined models are intermediate.

In view of the small size of the Washington State sample (the combined models are 
generally dominated by the Minnesota data), the non-random and ad hoc character 
of the Washington intersections (an "opportunity" sample), the lesser quality of 
some of the collected Washington data (e.g., traffic and angle), and the 
insignificance of variables of interest (including the State variable), we take the 
Minnesota models as fundamental. 

In particular, we offer the models in Table 35 as our final models for three-legged 
and four-legged intersections. These models are based exclusively on Minnesota 
data, and significant variables and marginally significant ones are included where 
we have allowed greater latitude for the alignment variables in the spirit of a "best 
guess" approach. In these runs the variables with unexpected signs (ND for the 
three-leggeds and RHRI for the four-leggeds) have been omitted. These models 
are the best we have to offer. Their shortcomings become apparent by comparing 
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them with Tables 31 and 32, where more variables are included and both States 
are represented.
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5. Modeling

Logistic Modeling

Logistic modeling was done in this study on the Minnesota data to determine 
whether the probability of a serious accident given that an accident has occurred 
can be related to highway and intersection variables. The variable INJACC counts 
the number of injury accidents (i.e., other than property damage only accidents) 
and includes accidents with non-incapacitating injuries and possible injuries, 
whereas the focus of the logistic modeling is serious accidents (fatal or 
injury accidents). All sites with zero accidents were excluded. 

Although the results are inconclusive, we present them here since the 
methodology may be of interest.

Theory

Logistic regression is used to estimate probabilities for binary data or discrete 
ordinal data. In our case two severity classes are used: serious accidents and 
other accidents. The probability of an accident being severe is represented as 
a function of highway and intersection variables of generalized linear type, typically 
a logistic function of a linear combination of these variables. 

A variable Y for each accident is defined as follows:

 

 

Then P1 is the probability that Y has the value 1 given the value x = (x1,...,xk) of 
the highway characteristics at the accident site . With the logistic function, the 
model takes the form

This functional form guarantees that P1 will always be a number between 0 and 
1. Since P1 is the probability that an accident is severe (Y = 1) given the values of 
x, then 1 - P1 is the probability that an accident is not severe (Y = 0). The 
likelihood function for all the observed severities, derived from the binomial 
distribution under the assumption that the accidents are independent events, is:

A measure of goodness of fit used on this model is the rank correlation (available in 
the SAS procedure LOGISTIC). All possible accident pairs with distinct severities 

http://www.tfhrc.gov/safety/98133/ch05/ch05_04.html (1 of 3) [19/03/2008 11.32.52]



Logistic Modeling

are formed from the data, and then one calculates:

total = t = the total number of pairs

concordance = nc = the number of pairs for which the model predicts higher 
probability of a severe accident for the member of the pair that had the more 
severe accident

discordance = nd = the number of pairs for which the model predicts higher 
probability of a severe accident for the member of the pair that had the less 
severe accident 

ties = t - nc - nd = the number of pairs with same predicted probability of a 
severe accident . 

Probabilities are grouped into intervals of length .02 and are considered equal if they 
lie in the same interval. Finally one calculates 

c = (nc + 0.5(t - nc - nd))/t.

The statistic c takes values between 0 and 1, and achieves the value .5 on average if 
a member of each pair is chosen with equal probability. Thus the farther above .5 c 
is the better the model.

Results

On the 619 Minnesota segments of this study in the time period 1985-89 there were 
a total of 1,694 accidents, 121 of them serious. The models that result from 
maximum likelihood techniques showed no significant variables other than 
commercial ADT percentage T. Horizontal alignment or vertical alignment, but not 
both, had positive coefficients but the P-values were insignificant (one form 
of horizontal, not shown here, had a P-value of .306). One typical run yielded 
equation (5.18):

(5.18)

The P-values and statistic c are shown below.

TABLE 38. Logistic Model for Serious Accident Probability, Minnesota Segments

PARAMETER ESTIMATE P-value 

Intercept -3.0060 0.0001 

Percent of commercial vehicles = T 0.0413 0.0310 

Crests of Type I rate = VMCC 0.0314 0.5634 

Concordance = 53.1%, Discordance = 41.6%, c = 55.8% 

 

The statistic c differs from 50% by an appreciable but modest amount.

For the three-legged Minnesota intersections, from 1985 to 1989, there were 
524 accidents, 34 of them serious. Accident severity does not seem to be 
significantly affected by the value of the Conflict Index CINDEX. However, as 
equation (5.19) shows, horizontal alignment (out to 764 feet in each direction) tends 
to increase the severity, while severity is negatively influenced by vertical 
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alignment (The variable VCEI is a variant of VCI, going out to 764 feet rather than 
250 feet). Since there are very few serious accidents, this result contrary to 
expectation may reflect peculiarities in the sample.

(5.19)

TABLE 39. Logistic Model for Serious Accident Probability, MN 3-
Legged Intersections

PARAMETER ESTIMATE P-value 

Intercept -2.39 0.0001 

Crest curve rate VCEI (out to "764') -2.5099 0.03 

Horizontal curvature rate HEI (out to " 764') 0.0753 0.09 

Concordance = 60.4%, Discordance = 33.5%, c = 63.4% 

 

For the four-legged Minnesota intersections, from 1985 to 1989, there were 
494 accidents, 58 of them serious. The model below was developed.

 

Alignments were not at all significant. Instead the conflict index and the 
angular deviation from 90º were marginally so. Roadside Hazard Rating, although 
not significant, was also retained.

TABLE 40. Logistic Model for Serious Accident Probability, MN 4-
Legged Intersections

PARAMETER ESTIMATE P-value 

Intercept -2.38 0.0001 

Conflict index CINDEX 1.75 0.10 

Angle DEV -0.016 0.20 

Roadside Hazard Rating RHRI 0.079 0.55 

Concordance = 57.1%, Discordance = 40.3%, c = 58.4% 

 

 

http://www.tfhrc.gov/safety/98133/ch05/ch05_04.html (3 of 3) [19/03/2008 11.32.52]



Summary

5. Modeling

Summary

A variety of modeling techniques - Poisson, negative binomial, 
extended negative binomial, and logistic - have been applied in this 
chapter, along with measures of overdispersion, goodness-of-fit, and 
concordance. In general the Poisson models, negative binomial, and 
extended negative binomial models give mutually consistent values for 
regression coefficients. The T1 statistic indicates that overdispersion is 
present and thus that negative binomial models are to be preferred. 
The logistic models are not particularly satisfactory, perhaps because 
of the relative infrequency of serious accidents and the relatively 
greater importance of missing variables.

The segment models - our final model is in Table 27 - support the 
assertion that most of the variables in the study are significant. Some 
variables that correlate with accidents (e.g., commercial traffic 
percentage T) are omitted because they are not as significant as 
competing variables. However, the chief variables - exposure, lane 
and shoulder width, Roadside Hazard Rating and driveway density, 
and the alignment variables - are all represented. Differences between 
States appear to be genuine and are captured by the variable STATE. 
When we pass to the negative binomial and the extended negative 
binomial, the coefficient estimates are reapportioned somewhat as 
overdispersion and localized vertical and horizontal measures make 
their contribution to the variation in accident counts. 

With regard to intersections, the final models are presented in Table 
35. Minnesota data are taken as fundamental because the 
Washington intersection data are non-random and less reliable. 
Furthermore, the criteria for significance are relaxed so that "best 
guess" coefficients for alignment design variables can be presented. 
The effects of number of driveways, Roadside Hazard Rating, the 
angle variables, and channelization show notable variation between 
the three-legged intersections and the four-legged. Number of 
driveways has unexpected sign (negative) on three-leggeds in both 
States. Roadside Hazard Rating has unexpected sign (negative) on 
four-leggeds in both States. The acute/obtuse angle variable HAU 
behaves as expected on four-leggeds but not on three-leggeds, but 
another angle variable, deviation DEV from 90º, is more significant on 
four-leggeds. The presence of major road turning lanes increases 
accidents on three-leggeds but decreases them on four-leggeds. In 
the final models of Table 35 number of driveways (wrong sign) is 
omitted from the three-legged intersections, while Roadside Hazard 
Rating (wrong sign) and right turn lanes (insignificant) are omitted from 
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the four-legged intersections.

Some noteworthy differences also appear between the Minnesota and 
Washington models, for example, the insignificance of Roadside 
Hazard Rating in Minnesota segments (due perhaps in part to less 
variation), the anomalous sign of lane width in Washington segments 
(perhaps related to design differences), differences in the commercial 
traffic percentage variable T between the two States, and 
insignificance of most variables on the Washington three-legged 
intersections. 

The combined segment model (Table 27) and the Minnesota 
intersection models (Table 35) exhibit the effects of the chief variables, 
while minimizing anomalies found in some variables and in 
Washington intersection data.
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6. Validation and Further Analysis

Validation

Validation Techniques

The chi-square statistic  2 provides a rough validation measure. More precisely, 

use is made here of a concocted  2, called  c2 , that applies to both the 
Poisson and the negative binomial distribution:

 

A more refined approach is to compute the z-score of the concocted statistic c2. 
If the null hypothesis that the model is valid is true, it can be shown that the 

expected value of c2 is the sample size N and its variance is given by:

 

Then the z-score of c2 is 

and this statistic is approximately normal.

Also computed are the mean absolute deviation (MAD) and the mean absolute 
scaled deviation (MASD):
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These are two additional measures of the predictive power of the model.

Minnesota Models versus Later Minnesota Data

Highway Safety Information System data became available during the course of 
this study for the years 1990-1993 in Minnesota. These data included accident 
counts, traffic, shoulder widths, lane widths, and speeds for 392 segments (out of 
the 619 in the original sample), and accident, traffic, and speed data for 365 
three-legged intersections (out of the original 389) and 309 four-legged 
intersections (out of the original 327). The sample sizes for the second time period 
are smaller because sites with major changes (for example, segments that 
had changed length) or for which accident counts were not available were omitted. 
The new values of the highway variables were applied to the leading models and 
the predicted mean accident counts were compared with actual accident counts to 
test how the models performed. Variables such as number of driveways, 
Roadside Hazard Rating, and alignment were not revised for the new data sets. 
The values of these variables were obtained from photologs for 1985-89 and 
original construction plans. Updated values were not available, and it was 
assumed that few changes had occurred.

Table 41 shows the results of applying the Minnesota models from Tables 26 and 35 
to the 1990-93 Minnesota data. The first model is an extended negative binomial 
model for segments with an overdispersion parameter K = .2722, the second and 
third models are negative binomial models with K = .4811 and .2055, respectively. 

The critical value 295% has been listed for comparison purposes. The segment 
data fit the model quite well, while the three-legged and four-legged intersections fail 
to fall within the 95% critical value. If we adopted as null hypotheses that the 
segments, the three-legged intersections, and the four-legged intersections were 
drawn from intersections with mean accident counts given by the models, we 
would reject these hypotheses for the intersections and fail to reject for the segments. 

TABLE 41. Validation of Minnesota Models with 1990-1993 Minnesota Data

 

 

 

  

 

Sample 
size

of data 
used in 

modeling 

Sample 
size

N of 
validation 

data 

 

χc2 

Critical 
value 
χ295% 

Z-score

of χc2 

Mean

Abs.

Dev.

MAD 

Mean

Abs. 
Scaled

Dev. 
MASD 

MN Segment 
Model 

(Table 26)
 

619 392 304.6 439 -1.94 1.17 0.71 
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MN 3-legged 
Intersection 

Model

(Table 35) 

389 

 

365

 

 

464.1

 

 

410
 

1.94 1.02 0.73 

MN 4-legged 
Intersection 

Model

(Table 35) 327 

 

309

(308*) 

 

386.6

(343.3) 351 

 

2.05

(0.91) 

1.28

(1.15) 

 

0.85

(0.83) 

* One outlier removed

Nonetheless, in other respects the fits are reasonably good, not only for the 
segments but also for the intersections, with small mean absolute and absolute 
scaled deviations. The four-legged intersections improve dramatically when one 
outlier is removed, an intersection with 51 accidents in 1990-1993.

The objection may be made that accidents in the new time period are correlated 
with accidents in the old time period, and that the validation sample is not 
independent of the sample used to derive the model. The effect of this might be 
to generate predicted accident counts for the new time period similar to those in the 
old time period, but with the dependency on highway variables not receiving 
a genuinely independent test. Indeed, the overfitting of the segment data suggests 
this possibility.

Minnesota Models versus Washington Data

Table 42 below shows validation results when the Minnesota models of Table 41 
are applied to the Washington segments and intersections. In this case there is 
no danger of correlation and the validation data serve as an independent sample.

TABLE 42. Validation of Minnesota Models with 1993-1995 Washington Data

 

 

 

  

 

Sample 
size

of data 
used in 

modeling 

Sample 
size

N of 
validation 

data 

 

χc2 

Critical 
value 
χ295% 

Z-score

of χc2 

Mean

Abs.

Dev.

MAD 

Mean

Abs. 
Scaled

Dev. 
MASD 

MN Segment 
Model 

(Table 26)
 

619 712 991.8 775 4.69 1.52 0.85 
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MN 3-legged 
Intersection 

Model

(Table 35) 

389 

 

181

 

 

141.4

 

 

213
 

-1.14 1.17 0.74 

MN 4-legged 
Intersection 

Model

(Table 35) 327 90 188.0 113 5.22 2.68 

 

1.13

 

 

Table 42 shows a marked difference between the segment and four-legged 

Minnesota models and the corresponding Washington data with respect to c2. 
The MAD and the MASD look somewhat better. The three-legged model 
looks relatively good, but it should be recalled that this model has the 
largest overdispersion parameter (K = .4811 for the three-leggeds versus K = .2722 
for the segments and K = .2055 for the four-leggeds). The large 
overdispersion parameter indicates more unexplained variation than in the 

other models, and also has the effect of increasing the denominator in c2 and MASD.

In the case of the segments one explanation of the large z-score of c2 is 
the difference in overall accident rate (accidents per million vehicle-miles) 
between Minnesota and Washington. In Table 43 a comparison is shown of 
three different ways of applying the Minnesota segment model to the Washington data:

i) the model is used as is;

ii) the predicted mean is taken to be that in i), multiplied by the ratio (1.0228/.6656) 
of the accident rate (accidents per million vehicle-miles) in Washington to the 
accident rate in Minnesota; or

iii) the predicted mean is taken to be that in i) multiplied by that factor which gives 
the maximum likelihood estimate when the predicted mean in i) is used as an offset.

TABLE 43. Validation of Adjusted MN Segment Model with 1993-1995 WA Data

 

 

 

  

 

Sample 
size

of data 
used in 

modeling 

Sample 
size

N of 
validation 

data 

 

χc2 

Critical 
value 
χ295% 

Z-score

of χc2 

Mean

Abs.

Dev.

MAD 

Mean

Abs. 
Scaled

Dev. 
MASD 
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Validation

MN Segment 
Model 

(Table 26)

without

adjustment 619 712 991.8 775 4.69 1.52 0.85 

MN Segment 
Model

(Table 26),

mult. by 

1.0228/.6656 619 

 

712

 

 

630.3

 

 

775
 

-1.45 2.07 0.77 

MN Segment 
Model

(Table 26)

mult. by exp
(.0914) 619 

 

712
 

869.8 775 2.69 1.57 0.81 

Table 43 shows that multipliers lead to better fits. An argument in favor of the 
maximum likelihood multiplier, exp(.0914), is that the ratio of the overall accident 
rates, 1.0228/.6656 = exp(.430), does not measure the effect of variables 
besides exposure observation by observation and that differences between the 
two States in these other variables may already be represented in the model. 
Method iii) introduces the intercept giving the maximum likelihood fit after the 
model has accounted for other variables to the extent possible.

Table 43 calls attention to the important question of how a model developed for one 
or more States in some time period should be applied to other States and/or other 
time periods. A multiplier such as the ratio of accident rates or the maximum 

likelihood intercept can be applied, or even one tailored to minimize c2 or MAD 
or MASD. The choice of multiplier in general depends on the quantity being 

optimized. Thus, for example, to obtain a value for c2 as close as possible to zero 
in Table 43, a multiplier intermediate between exp(.0914) and exp(.430) might be used. 

Washington and Combined Segment Models versus Minnesota Data

Table 44, similar to Table 43, can be generated by applying a Washington 
State segment model to the Minnesota data. The extended negative binomial model 
for Washington State from Table 26 is applied to the 1985-1989 Minnesota data 
with and without a multiplier in Table 44. The ratio of accident rates, .6656/1.0228 = 

exp(-.430), yields the largest z-score for c2, while the maximum likelihood 
intercept, exp(-.2108), yields the z-score closest to zero. 

TABLE 44. Validation of Adjusted WA Segment Model with 1985-1989 MN Data
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Sample 
size

of data 
used in 

modeling 

Sample 
size

N of 
validation 

data 

 

χc2 

Critical 
value 
χ295% 

Z-score

of χc2 

Mean

Abs.

Dev.

MAD 

Mean

Abs. 
Scaled

Dev. 
MASD 

WA Segment 
Model 

(Table 26)

without

adjustment 712 619 513.2 678 -1.96 1.75 0.72 

WA Segment 
Model

(Table 26),

mult. by 

.6656/1.0228 712 

 

619

 

 

900.3

 

 

678
 

4.93 1.66 0.88 

WA Segment 
Model

(Table 26)

mult. by

exp(-.2108) 712 

 

619
 

645.0 678 0.47 1.65 

 

 

0.78

  

 

The combined extended negative binomial model for segments (Table 27) can 
be applied to the segment data for Minnesota and Washington individually and, 

as expected, yields z-scores for c2 close to zero (.926 on Minnesota data, -.0577 
on Washington data). When applied to the 1990-1993 Minnesota data (with STATE 
= 0) it yields the results in Table 45. The accident rate for the 1990-1993 
Minnesota segments is .5509 accidents per million vehicle-miles, whereas for 
the combined Minnesota-Washington data set, used in the modeling, the rate 
is .8070 accidents per million vehicle-miles.

The data used for validation in Table 45 are not independent of those used in 
modeling since some of the segments are the same. Nonetheless, it is of interest 
to note that adjustments may be appropriate when a model is applied to a new 
time period. Table 45 shows that adjustments that increase likelihood may 

have variable effects on c2, MAD, and MASD. 

TABLE 45. Validation of Combined Segment Model with 1990-1993 MN Data
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Sample 
size

of data 
used in 

modeling 

Sample 
size

N of 
validation 

data 

 

χc2 

Critical 
value 
χ295% 

Z-score

of χc2 

Mean

Abs.

Dev.

MAD 

Mean

Abs. 
Scaled

Dev. 
MASD 

Combined 
Segment 

Model 

(Table 27)

without 
adjustment 1331 392 296.1 439 -2.09 1.20 0.71 

Combined 
Segment 

Model

(Table 27),

mult. by 

.5509/.8070 1331 

 

392

 

 

495.0

 

 

439
 

2.09 1.12 0.85 

Combined. 
Segment 

Model

(Table 27)

mult. by

exp(.0938) 1331 

 

392
 

273.4 439 -2.62 1.26 

 

 

0.69
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Explanatory Value

6. Validation and Further Analysis 

Explanatory Value of Final Models

One way to assess the explanatory power of models is to examine the coefficient 
of determination R2 and see how it changes as one adds variables to the model. 
In Tables 46 and 47 and Figures 6 

TABLE 46. Accident Variation by Groups of Covariates, Final Segment Model

 

Combined Extended Negative Binomial Model 
(Table 27) 

Log-Likelihood Coefficient of 
Determination(%) 

Randomness 45.20 

Exposure 26.81 

State 2.63 

Lane Width, Shoulder Width 2.33 

Roadside Hazard Rating, Driveway Density 1.38 

Alignment (DEG{i}, V{i}, GR{i}) 1.95 

Unexplained 19.70 

TOTAL 100.00 

 

and 7, this is done for three of the models S the combined segment model of Table 

http://www.tfhrc.gov/safety/98133/ch06/ch06_02.html (1 of 3) [19/03/2008 11.33.03]



Explanatory Value

27, and the Minnesota three-legged and four-legged models of Table 35. Because 
all of these models are of 

TABLE 47. Accident Variation by Groups of Covariates, Final Intersection Models

 

 

Minnesota Intersection 

Models (Table 35) 

Log-Likelihood 
Coefficient of 

Determination (%) 

three-
legged 

four-
legged 

Randomness 53.96 59.19 

Exposure (ADT1, ADT2) 27.12 27.99 

Design (All other variables) 1.78 2.06 

Unexplained 17.14 10.76 

TOTAL 100.00 100.00 

 

 

negative binomial type, we use the Log-Likelihood R-squared proposed by Fridstrøm 
et al. (1995). With respect to this measure, negative binomial randomness 
is represented by 1 - P2 D. The contribution of other factors is represented by R2 D 
for the first variable when a model with that variable present is used, and then 
the increment in R2 D for each additional variable as it is added to the model. Finally 

the unexplained portion of variation is P2 D - R2 D, where R2 D is the R-squared 
value obtained when all variables are present.
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Explanatory Value

Although the Log-Likelihood R-squared is not the only way to compare 
explanatory values, it is a reasonable way to do so for negative binomial models 
(and we presume for their extended negative binomial counterparts). The tables 
and figures indicate that the portion of mean accident counts explained by 
variables other than exposure and ADT is small.
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Scaled Residuals

6. Validation and Further Analysis

Cumulative Scaled Residuals 

Figures 8 through 15 below show cumulative scaled residual plots for the extended 
negative binomial model (combined segments, Table 27) and for negative binomial 
models (Minnesota three-legged and four-legged intersections, Table 35). The 
cumulative scaled residuals are plotted against leading explanatory variables. For an 
explanatory variable x, a plot is made of j versus 

where j runs through the values of x. Each term, a scaled residual, should be 
approximately unbiased. However, if the sum depends in some regular way on j, then 
the model may have missed some systematic effects (e.g., quadratic dependency). If 
there is no systematic effect and the terms are otherwise independent, the expected 
value of the sum is approximately zero, and its standard deviation is approximately 
the square root of the number of observations for which x  j. For the segments this 
means a standard deviation not in excess of 1331  36.5 and for the intersections 
one not in excess of 389  19.7 (three-legged) or 327 18.1 (four-legged). The 
cumulative scaled residuals should represent the net distance traveled after each 
step in a random walk that ends at the sum of the scaled residuals for the entire data 
set. 

For the segments (Figures 8, 9, 10, and 11) the overall sum of the scaled residuals is 
about -8, for the three-legged intersections (Figures 12 and 13) the sum is about -2, 
and for the four-legged intersections (Figures 14 and 15) the sum is about +1. Thus 
the segment graphs and the three-legged graphs should end below the horizontal 
axis, while the four-legged graphs should end above.

Table 48 summarizes the residual behavior.
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Scaled Residuals

The segment model overpredicts (predicted mean number of accidents higher than 
actual number) at the low end of exposure. The cumulative scaled residual varies 
from -32 to +12. 
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Scaled Residuals

Overprediction occurs on segments without horizontal curves. The cumulative scaled 
residual varies from -36 to +7. 
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Scaled Residuals

The segment model underpredicts on segments without crest curves. The cumulative 
scaled residual varies from -13 to +30 .
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Scaled Residuals

The cumulative scaled residual varies from -24 to + 22.
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Scaled Residuals

The cumulative scaled residual varies from -9 to +11.
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Scaled Residuals

The cumulative scaled residual varies from -16 to +7.
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Scaled Residuals

 

The cumulative scaled residual varies from -4 to +12.
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Scaled Residuals

.

Despite the indications of overprediction or underprediction in some regimes in the 
segment model, which might lead one to develop separate models in different 
regimes (e.g., one model for low exposure, one for medium exposure, and one for 
high), the graphs are generally consistent with random walks. In particular the ranges 
shown in Table 48 above are reasonable. In a random walk, as mentioned, the n-th 
step or observation on average will take one a distance of less than ±(n)1/2 units from 
the origin. In addition it is not at all uncommon to stay on one side of zero (above or 
below) for many steps in succession. Negative binomial models never predict zero 
values for the dependent variable (in our case numbers of accidents). Thus at low 
values of highway variables (presumed to be associated with fewer accidents), when 
the true number of accidents is zero, the negative binomial predicts a positive 
number and hence must overpredict at least somewhat.
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6. Validation and Further Analysis 
 

Summary

Validation based on a chi-square statistic c2, mean absolute 
deviation MAD, and mean absolute scaled deviation MASD suggests 
that the models have some predictive power. The Minnesota models 
behave well on the later Minnesota data (Table 41): the segment 
model is even underdispersed. This does not constitute a real test, 
though, since the data sets are dependent so that accidents in the 
later time period might be expected to correlate well with accidents on 
the same segment in the earlier time period (and the latter are the 
basis for the model). A better test is to validate models from one State 
with data from the other. On Washington data (Table 42) the 
Minnesota models give small values for MAD and MASD, although the 
Washington four-legged sample gives somewhat large values. The 
Washington segment model also gives small values of MAD and 

MASD on Minnesota data (Table 44). To get a small value of c2, 
one adjusts the intercept term of the model to account for a difference 
in accident experience between the States. Inspection of Tables 43 

and 44 shows that the multiplier that makes c2 smallest for the 
Minnesota segment model applied to Washington data is 
approximately 1.35, while the best multiplier for the Washington 
segment model applied to the Minnesota data is on the order of 0.85. 
The product of these numbers is approximately 1.0, as is reasonable.

As assessed by the Log-Likelihood R-squared, the explanatory power 
of the highway variables is rather limited. Exposure and ADT account 
for about 27% of the variation. For the segments a total of 5.7% of the 
variation is accounted for by other highway variables (while STATE 
accounts for 2.6%). For the three-legged intersections, all highway 
variables other than ADT account for only 1.8% (perhaps in part 
because of the large overdispersion parameter in the three-legged 
model), while for the four-leggeds the other variables account for 
2.1%. See Tables 46 and 47, and Figures 6 and 7.

Although the cumulative scaled residual graphs for the segments 
suggest some differences in regimes, the graphs in Figures 8 through 
15 are generally consistent with the model forms in Tables 27 and 35. 
Different models applied when some of the highway variables are 
confined to subsets of their full range (first quartile, second quartile, 
etc.) might yield better fits, but if a single overarching model is wanted 
for each of the three classes of data, the final models in Tables 27 and 
35 are plausible candidates (with adjustments for different States and 
times).
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