3 S A
Crash Models for Rural Intersections:

Four-Lane by Two-Lane

Stop-Controlled and |W0-Lar‘1e by
Two-Lane Signalized
PUBLICATION NO. FHWA-RD-98-128 OCTCBER 1999

Q

US.Department of Transportation
Federal Highway Administration

Research, Development and Technology
Turner-Fairbank Highway Research Center
6300 Georgetown Plke

McLean, VA 22101-2296




FOREWOQORD

This report provides direct input into the Accident Analysis Medule (AAM) of the Interactive
Highway Safety Design Model. The AAM is a tool that highway engineers can use to evaluate
the impacts of highway design elements in project planning and preliminary design. Three crash
models were developed relating crashes to three types of rural intersections. These types are: (1)
three-legged intersections with major four-lane roads and minor two-lane roads that are stop-
controlled, (2} four-legged mntersections with major four-lane roads and minor two-lane roads
that are stop-controlled, and {3) signalized intersections with both major and minor two-lane

roads.

Elaborate sets of data were acquired from State data sources {Michigan and California} and
collected in the field. The final data sets consist of 84 sites of the three-legged intersections, 72
sites of the four-legged intersections, and 49 sites of the signalized intersections. Negative
binomial models — variants of Poisson models that allow for overdispersion — were developed
for each of the three data sets. Significant variables included major and minor road traffic; peak
major and minor left-turn percentage; peak truck percentage; number of driveways; and
channelization, intersection median widths, vertical alignment, and, in the case of signalized
intersections, the presence or absence of protected left-turn phases. Separate models were
developed for crashes resulting in injurtes and total crashes.
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1. INTRODUCTION

This study develops crash modeis for:

»  Rural three-legged and four-legged intersections on four-lane highways, stop-controlled on
the minor legs.

« Signalized rural intersections of two-lane roads.

An earlier study,’ of which this may be regarded as a continuation, treats segments of two-lane rural
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roads and rural three- and four-legged intersections of two-lane roads, stop-controllcd on the minoi
legs. The two studies together consider the chief geometries on two-lane roads — segments,
intersections with minor road stop-controlled, and signatized intersections. In addition, this study
branches out by passing from intersections on two-lane roads to ones on four-lane roads.

A major intended use of crash models such as the ones developed here is in the Accident Analysis
component of the Interactive Highway Safety Design Model (IHSDM). The IHHSDM is a proposed
set of interactive computer programs that wiil allow highway designers to examine the safety
consequences of various design alternatives. These programs will assess how proposed designs
relate to driver expectations, vehicle and driver capabilities, traffic flows, and established design
principles.

The Accident Analysis component, or Accident Analysis Module, is intended to estimate, in
quantitative terms, the safety effects — crash frequencies and severities — that may result from
different designs. In addition to driver and vehicle variables, safety is influenced by the volume and
movement of traffic. It is also influenced by such design features as channelization, horizontal and
vertical curves, sight distances, and roadside conditions. The module was tentatively envisioned
(op. cit.) to have four parts, dealing respectively with segment crashes, intersection crashes,
interchange ramp crashes, and roadside crashes. The safety consequences of a particular design
would be the sum of the contributions of each part. A mode! would be developed for each tvpe of
crash and the models would be combined to yield an overall picture of design consequences.

" A. Vogt and J.G. Bared, Accident Models for Two-Lane Rural Roads: Segments and
Intersections, Report No. FHWA-RD-98-133, Federal Highway Adminisiration, McLean, Va.,
1998; and A. Vogt and J.G. Bared, “Accident Models for Two-Lane Rural Segments and

Intersections,” Transportation Research Record 16351 13-29, 1998,

2 JLA. Reagan, “The Interactive Highway Safety Design Model: Designing for Safety by
Analyzing Road Geometrics,” Public Roads: 37-43, Summer 1994.

H. Lum and J. Reagan, “Interactive Highway Safety Design Model: Accident Predictive
Module,” FHWA Draft 8-22-94.
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The goal of the present study is to assess the combined and relative effects of highway variables on
intersection crashes for the classes of intersections noted above. The method used, by now a well-
established method, is that of generalized linear models based on a negative binomial distribution.
Crashes are thought of as discrete rare events, the number of crashes at an intersection being a
random variable of the Poisson type with overdispersion. The mean number of crashes 1s an
exponential function of a linear combination of intersection variables and the variance in crash
counts depends on the mean, as well as on an overdispersion parameter representing factors not

inciuded in the model.

In Chapter 2, literature on modeling of intersection crashes 1s reviewed. In Chapters 3 and 4, the data
coilection and preliminary analysis are described, and in Chapter 5, the models are presented and
evaluated. A final chapter, Chapter 6, summarizes the results of this study.



2. LITERATURE REVIEW

In this chapter, representative studies are reviewed that relate intersection crashes to highway
variables. The chief highway variables are the Average Daily Traffic (ADT)} on the intersecting
roads, but closer analysis indicates an important role for traffic movements as they pertain to
different crash types. Most studies recognize that other variables, such as sight distances and
channelization, also affect safety, and some studies that consider these other variables are discussed
below. In addition, a number of studies are reviewed that examine the issue of the appropriate modei
form and/or functional form for mean number of crashes. Studies that deal with special 1ssues, such
as underreporting of crashes and crash location, are also noted.

This review is not meant to be exhaustive. Further review of the literature and many additional
references may be found in the articles cited here. Of particular value for its up-to-dateness is the

MRI Report (1997).° Our interest is rural intersections and, where possible, we shall emphasize
studies 1n rural settings.

The chapter closes with a few overall conclusions,

CRASHES AND TRAFFIC

Many studies have been devoted to the relationship between crashes and traffic.

A 1953 study by McDonald* in California of intersections on divided highways, stop-controlled on
the minor legs, represents crashes per year in graphical form as a function of major and minor road

incoming daily traffic. A total of 150 three-legged and four-legged intersections on U.S. 99 and U.S.
40 were treated together and a dependency of the form:

N = 0.0(}0783(Vd)0.455(VC)0.633

was found where N 1s the number of crashes per year, V, is entering major road Average Daily

* Midwest Research Institute, Critical Reviews of Intersection Safety Studies Task K
Resource Paper, MRI Report, Contract No. DTFHO1-96-C-00055, MRI Project No. 4584-09,
Kansas City, Mo., 1997.

41 W. McDonald, “Relation Between Number of Accidents and Traffic Volume at
Divided-Highway Intersections,” Highway Research Board Bulletin 74, Traffic-Accident
Studies, pp. 7-17, National Academy of Sciences, National Research Council, Washington,
D.C., 1953.



Traffic (ADT), and V_ is entering minor road ADT. This study advocates crashes per year rather
than crashes per million entering vehicles as a measure of intersection safety, and emphasizes that
crash experience at an individual intersection is a variable, while N is the mean for an aggregate of
intersections with the given volumes. Median widths, channelization, and number of lanes at sample
intersections were not explicitly noted. The study concludes that crashes are more sensitive to minor
road volumes. Of interest is that the minor road ADT in this study was based on weekday 24-hour

e eounte at moet sites and mav be more accurate than that in other studies
¢ count 1an that in other
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Another study in California, by Webb® in 1955, examines two-phase signalized intersections and
arrives at the equations:

N, = 0.000189(4DT1)"(4DT2)"
A nonantoenr 4TIt 4y 058
JVS = U UUIOT(AL/L L} [¥2) <)

where Ny, Ng, and N, respectively, are the number of crashes per year at urban, semi-urban, and
rural two-phase intersections, and ADT1 and ADT2 are major and minor road two-way average daily
traffic counts (units have been adjusted from the onginal study). The three categories were
determined by speed limits: 25 mph (40.2 km/h) was regarded as urban; more than 25 mph (40.2
km/h) but less than 45 mph (72.4 km/h) as semi-urban; and 45 mph (72.4 km/h) or more as rural,
Intersections having unusual features were eliminated, and the resulting sample sizes were 23, 60,
and 14 intersections for urban, semi-urban, and rural, respectively. Some of those that remained
were on four-lane divided highways. Rear-end crashes on the minor road, a county road, were
omitted, and the author notes that this may, in part, be responsible for the decreasing power of minor
road ADT as one moves from urban to rural and from lower to higher major road speeds. The author
also notes that intersection geometry, roadside development, and sight distance are influential causal
factors for crashes. Hauer and Persaud (1996, p. 84)° find Webb’s equation for N, the most plausible
among available studies.

* (3.M. Webb, “The Relation Between Accidents and Traffic Volumes at Signalized
Intersections,” Institute of Transportation Engineers Proceedings, Technical Session No. 3B,
pp. 149-167, 1955.

¢ E. Hauer and B. Persaud, Safety Analysis of Roadway Geometry and Ancillary Features,
Transportation Association of Canada, Ottawa, 1996.
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Yet another California study, David and Norman (1975),” considers crash factors at San Francisco

Bay Area intersections, but only at intersections with at least two crashes in the time pertod 1971-
1973. This study includes numerous tabular presentations of crash counts for ranges of crash factors.
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Crashes were classﬁ' ed by severity and by traffic conflicts and movements., Let us call the
conflict/movement categories “Typical” and “Other.” The study includes a linear regression model
for the number of “Typical” intersection crashes per 3 years. The chief factors in the model in

decreasin g order of importance (as measured by R-squared statistics), along with the sign of their
effect,

+ A measure of traffic volume based on “Typical” conflict/turning

movement.

+ Number of “Other” crashes in time period.

+ Number of U-turn restrictions.

- Number of right-turn lanes.

- Number of lanes on major road.

+ Stop-controlled versus signalized (0 versus 1).

+ Width of minor road.

Number of divided streets.
Number of left-turn lanes.

1

This model (David and Norman, 1975, p. 105} was based on 82 intersections for which directional
ADT data were available. David and Norman note, as does Webb, that introduction of left-turn lanes
at signalized intersections without conversion of two-phase signals into three or more phases tends
to increase crash counts. For a sample of 558 intersections, the percentage of nighttime crashes was
usually 20 to 30%, with no notable variation when lighting was present. Possibly, the percentage
of crashes at the lighted intersections would have been higher if they had not been lighted.

Hakkert and Mahalel (1978)° observe that more than 50% of crashes occur at intersections. They
analyze four-legged intersections in terms of 24 crossing or merging pairs of traffic flows (vehicles
per unit time). For each pair, they calculate the product of the two flows and sum over ali 24 pairs

to obtain a traffic flow index x. For urban and interurban intersections in Israel, they obtain a
Poisson-type mode] of the form:

N =4 + Bx

7 N.A. David and J.R. Norman, Motor Vehicle Accidents in Relation to Geometric and
T rffrm Hortir res o f”rrr/ ATFIL; fmfar(‘o(’)‘rnnv Vninmﬂ ” Ppc;oﬂrr'h pf)hn}’f RPY\OT’T Nn FT—TWA RT)_

dFlifjEe I Ciser © rgnway tnlersections, »oiu DEZSAVLHL DOV, o)
& f

76-129, Federal Highway Administration and National Highway Traffic Safety Administration,
Washington, D.C., 1975.

8 A.S. Haklkert and D. Mahalel, “Estimating the Numbe r of Accidents at Intergections

he Traffic Flows on the Approaches Accident Analysis and Prevention

[ ,
o+

From a Knowledge o
10: 69-79, 1978.
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where N is the mean number of crashes per unit time at the intersection and A and B are suitable
positive constants. The crashes were injury or fatality crashes, the roads a mix of two-lane and four-
lane, and the intersections a mix of signalized and non-signalized. Traffic flows for the modeling
were based on 16-hour weekday counts. The presence of the constant term A is taken as evidence
that for small values of x, other factors come into play.

Pickering, Hall, and Grimmer (1986)° consider crashes at three-legged intersections of two-lane
roads. They report that in 1983, one-third of injury crashes occurred at intersections, and 43% of
these were at tee intersections. Their basic model is a Poisson model, with mean number of crashes
per unit time N of the form:

N = K(4DT1 x ADT2Y

where p is approximately 0.5. They consider such issues as how far a crash is from the intersection,
presence or absence of islands and channelization, and the dependence of crashes on pairs of traffic
flows. For different crash types, products of the relevant flows tended to be most significant, but the
model above performed respectably when all types of crashes were summed. Motorcycles and
bicycles were involved in a disproportionate number of crashes relative to their percentage of the
flow. Operating speeds of vehicles were significant, but depending on the type of crash, higher
speeds did not always lead to more frequent crashes.

A study of Hauer, Ng, and Lovell (1988)," based on 145 signalized intersections in Toronto,
considers 15 different crash patterns and develops negative binomial models for each pattern of the

forms:

N =KxF¢
N =KxF'xF,)

depending on whether one flow F or two flows I, and F, are involved, with a, b > 0. Here N is the
mean number of crashes of the given pattern on the population of all intersections having these
flows. Crashes are weekday daytime crashes involving two vehicles. The number of lanes on the
roads and the channelization are not noted This study is notable for, among other things, its very
thoughtful explication of assumptions underlying the use of the negative binomia! mode!.

°D. Pickering, R.D. Hall, and M. Grimmer, Accidents at Rural T-Junctions, Research
Report 65, Transport and Road Research Laboratory, Department of Transport, Crowthorne,
Berkshire, United Kingdom, 1986.

O E. Hauer, J.C.N. Ng, and J. Lovell, “Estimation of Safety at Signalized Intersections,”
Transportation Research Record 1185: 48-61, 1988,
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Bonneson and McCoy (1993)" develop a negative binomial model of the form:

1

N = K x (4DTH"54DT2y*!

Here N is the mean number of crashes. The overdispersion parameter for this model is 4.0, which
is rather laree. A total of 125 non-urban four-legeed intersections from Minnesota were considered
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in the study, i7 of which had four-lane major roads with substantial medians. All crashes occurring
within 500 feet (153 meters) of the intersection were included.

YARIABLES BESIDES TRAFFIC

The primary importance of traffic as an explanatory factor for intersection crashes relative to other
highway variables has fong been acknowiedged, and recent studies do not contradict this observation.
The study of Bauer and Harwood (1996)" concludes that highway variables other than traffic have
only a slight influence on crashes. A review, described by Bauer and Harwood, of hard-copy crash
reports at eight urban intersections found that “only 5 to 14% of the accidents had causes that
appeared to be related to geometric design features of the intersections.” The report of Vogt and
Bared (Vogt and Bared, 1998, p. 137), which develops crash models for three-legged and four-
legged intersections of rural two-lane roads, attributes about 2% explanatory value to design
variables as compared with 27% to ADT.

Nonetheless, designs aimed at improving safety will always be in demand, and attempts to quantify
design effect are entirely proper. Design variables that have received special attention in connection
with intersection crashes include: channelization, sight distances, horizontal and vertical alignment,
intersection angle, median width, and signal characteristics. Also noted below are the effects of
truck percentage in the traffic stream, speed, and weather.

Channelization

1t is generally thought that right-turn and left-turn lanes on major and/or minor roads contribute to

intersection safety. The model of David and Norman (1975) mentioned earlier indicates that lefi-
and richt-tum lanes reduce crashes, Thev also list left-turn storace lanes as one of six “demon-
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strably accident-related” intersection desmn features, but they find that opposing ieft-turn lfanes
without multi-phasing or at stop-controlled ntersections increase crashes. They suggest raised lane
markers to help drivers define their lateral location and multi-phasing at signalized intersections. The

' J.A. Bonneson and P.T. McCoy, “Estimation of Safety at Two-Way Stop-Controlled
Intersections on Rural Highways,” Transportation Research Record 1401: 83-89, 1993.

2 K.M. Bauer and D. Harwood, Statistical Models of At-Grade Intersection Accidents,
Report No. FHWA-RD-96-125, Federal Highway Admiristration, McLean, Va., 1996,
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summary of Kuciemba and Cirillo (1992)" mentions channelization, along with sight distance
improvement as a safety factor for intersections where turning traffic is high. Use of lane dividers

[, i nrhan cettines. while left-tum lanes 1 raral areas are exnected to reduce nassine
ciea 1o requee passing
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crashes. The study of Bauer and Harwood (1996) finds that left-turn lanes lower crashes, although
curbed dividers may not be more effective than painted ones. A study of McCoy, Hoppe, and
Dvorak (1985)" points out that left-turn lanes may be more necessary in the absence of paved
shoulders or when truck percentages are high. The study of Pickering, Hall, and Grimmer (]1986)
finds channelization, including islands, to be significant for certain crash types, but not for totai
crashes. Garber and Srinivasan (1991)" in a study of elderly drivers conclude that left-turn lanes
{and protected phasing) would have special benefits for the ¢lderly because of their proclivity for

crashes with opposing traffic,
Sight Distance

Intersection sight distances are an intuitively evident safety consideration at intersections. They are
noted as such by David and Norman (1975) and in the summary of Kuciemba and Cirillo (1992).
A study of Hanna, Flynn, and Tyler (1976)'° notes that sight distances on all approaches, for both
non-signalized and signalized intersections, affect crash rates in the expected way. Bared and Lum
(1992} also find that sight distances are shorter at high-crash intersections.

Horizontal and Vertical Alignment

Horizontal and vertical alignment are, of course, related to sight distances. Horizontal curves, in
particular, are associated with high crash rates. Their effects on roadway crashes are noted in the

¥ S.R. Kuciemba and J.A. Cirilio, Safety Effectiveness of Highway Design Featires,

Volume V - Iniersections, Report No. FHWA-RD-91-048, Federal Highway Administration,
Washington, D.C., 1992,

“P.T. McCoy, W.J. Hoppe, and D.V. Dvorak, “Benefit-Cost Evaluation of Left-Turn
Lanes on Uncontrolled Approaches of Rural Intersections (Abridgement),” Transporiation
Research Record 1025: 40-43, 1985,

¥ N.J. Garber and R. Srinivasan, “Risk Assessment of Elderiy Drivers at Intersections:
Statistical Modehng,” Transporiation Research Record 1325: 17-22, 1991.

6 J.T. Hanna, T.E. Flynn, and W.L. Tyler, “Characteristics of Intersection Accidenls in
Rural Municipalities,” Transportation Research Record 601: 79-82, 1976,

7 1.G. Bared and H. Lum, “Safety Evaluation of Intersection Design Elements (Pilot
Study),” Transportation Research Board Conference Presentation, Washington, D.C., 1992,
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report of McGee, Hughes, and Daily (1995)" and the references cited therein, as well as in the study
of truck crashes by Miaou, Hu, Wright, Davis, and Rathi (1993)"; the paper of Shankar, Mannering,
and Barficld (1995)%%; and the paper of Vogt and Bared (1998). This paper and the FHWA report
of Vogt and Bared (1998) also exhibit intersection crash models for three-legged and four-legged
intersections of two-lane roads in which the average degree of curve for nearby horizontal curves and
the average grade change per 100 feet (30.1 meters) for nearby crest curves are represented. These
curves are required to be on the major road, with some portion within 250 feet (76 meters) of the
intersection center. The minor roads are stop-controlled. Although the alignment variables are not
particularty significant (with P-values on the order of 0.30), they correlate reasonably well with crash
counts, especially on the four-legged intersections.

One oddity on the subject of alignments is the finding of Hanna et al. (1970) that steep grades tend
to decrease intersection crash counts. Grades different from zero appear to increase crash counis on
segments according to Miaou et al. (1993), Shankar et al. (1995), and Vogt and Bared (1998).

{untersection Angie

Right-angled intersections are encouraged in design. A study of McCoy, Tripi, and Bonneson
(1994)*' indicates that severely skewed intersections have higher crash experience. However, Bared
and Lum {1992} find right-angled intersections more dangerous than mildly skewed ones. This 1s
also supported by Bauer and Harwood {1996) for urban signalized intersections and by Vogt and
Bared (1998) for rural stop-controlled intersections of two-lane roads. A study of Kulmala (1995)
suggests that when major road tuming traffic that must cross the opposing major road lane(s) turns

8 H.W. McGee, W.E. Hughes, and K. Daily, £ffect of Highway Standards on Safety,
National Cooperative Highway Research Program Report 374, Transportation Research Board,
National Research Council, National Academy Press, Washington, D.C., 1995.

' S.-P. Miaou, P.S. Hu, T. Wright, S.C. Davis, and A.K. Rathi, Development of
Relationship Between Truck Accidents and Geometric Design: Phase [, Report No. FHWA-RD-
91-124, Federal Highway Administration, McLean, Va., 1993,

2V, Shankar, . Mannering, and W. Barfield, “Effect of Roadway Geometrics and
Environmental Factors on Rural Freeway Accident Frequencies,” Accident Analysis and
Prevention 27 (3): 371-389, 1995

2 P.T. McCoy, E.J. Tripi, and I.A. Bonneson, Guidelines for Realignment of Skewed
Intersections, Nebraska Department of Roads Research Project Number RES] (0099) P471,
1994,

2 R. Kulmala, Safety at Three- and Four-Arm Junctions: Development and Application
of Accident Prediction Models, VTT Publication 233, Technical Research Centre of Finland,
Espoo, 1995.




through an angle from 0° to 90°, fewer crashes occur than when the turning angle is from 90° to
180°. This is presumably because traffic exiting from the major road has better sight of oncoming
major road traffic for small angles. The intersection models of Vogt and Bared supporf this
conclusion in the case of four-legged intersections, but not in the case of three-legged ones.

Median Width, Surface Width, and Shoulder Width

Wider medians are generally associated with fewer crashes on divided highways. See the study of
Knuiman, Council, and Reinfurt (1993).% At intersections, a median region allows a zone of
protection for turning traffic (although if the zone is too wide, it converts one mntersection into two).
Harwood et al. {19935)* find that increased median widths are associated with fewer crashes at rural
unsignalized intersections, but with more crashes at suburban signalized intersections.

Bauer and Harwood (1996) find that increased lane widths and increased shoulder widths lower the
probability of serious crashes and/or multiple-vehicle crashes at urban non-signalized intersections.

Signal Characteristics

King and Goldblatt (1975)* discuss the important issue of whether signalization decreases crashes.
Their study and some others have found no significant decrease, but rather a change in the relative
frequencies of crash types (from right-angle to rear-end). The commonly accepted view is that at
high-volume intersections, signalization is beneficial, but that at low-volume ones, 1t may not be.

With regard to phasing, David and Norman (1975} indicate that protected left turns are beneficial.
For the elderly, this 1s supported by Garber and Srinivasan (1991), who also propose a longer amber
light. Bauer and Harwood (1996) likewise find a beneficial effect for multi-phase, rather than two-
phase, signaling in their modeling of urban intersections, as well as for actuated signais versus pre-
timed ones.

Lighting

Bauer and Harwood {1996) find that the absence of lighting contributed significantly to the number

2 M.W. Knuiman, F.M. Council, and D.W. Reinfurt, “Association of Median Width and
Highway Accident Rates,” Transporiation Research Record 1401: 70-82, 1993,

“ D.W. Harwood, M.T. Pietrucha, M.D. Woolridge, R.E. Brydia, and X. Fitzpatrick,
Median Intersection Design, National Cooperative Highway Research Program Report 375,
Transportation Research Board, National Research Council, National Academy Press, Washing-
ton, D.C., 1995,

3 G.F. King and R.B. Goldblatt, “Relationship of Accident Patterns to Type of
Intersection Control,” Transportation Research Record 540: 1-12, 1975,
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of injury crashes at rural three-legged and four-legged intersections. A study by Blower, Campbell,
and Green (1993)* indicates that truck crashes in Michigan are more frequent at night and in rural
settings; the combination of the two is deemed to imply less lighting. See also the study of Elvik
(1995).7

Roadside Conditions

Vogt and Bared (1998) find that roadside hazards, as measured by the Roadside Hazard Raiing ol
Zeeger ct al. (1987), contribute to crashes on three-legged intersections, while driveway density near
the intersection center contributes to crashes on four-legged intersections.

The Roadside Hazard Rating 1s a whole number from 1 to 7 (with 1 representing perfectly flat and
unobstructed roadsides, the least hazardous case) that evaiuates sideslope, clear zone, and distance
to the nearest hard object. In the Vogt-Bared study, the value is a subjective average along the major
road within = 250 feet (76.2 meters) of the intersection center. Although it is reasonable that nearby
driveways might make an intersection more dangerous, the Vogt-Bared results are based on
Minnesota data and it was not possible to eliminate driveway crashes explicitly from the data set.

Truck Percentage

David and Norman (1975) note the safety-relatedness of bus routing and zones, of clearly visible
street name signs, and of raised markers and striping to indicate turning lanes and to remind the
driver of intersection control features. Their study is primarily urban, but the routing of buses and
the placement of bus zones can be thought of as the equivalent of truck tratfic and truck turning
percentages. Not only are trucks more difficult to maneuver and potentially more likely to cause
serious crashes, but they are also obstacles that interfere with the line of sight of drivers (including
the truck driver making a turn).

Blower, Campbell, and Green (1993) find that significant causative factors for truck crashes are:
rural environment, nighttime, and road type “other” {versus “major arterial” or “limited access™).
Furthermore, bobtail trucks (no tractor) are more crash-prone than single or double tractors. McCoy.
Hoppe, and Dvorak (1985), as noted, favor left-turn lanes when truck percentages are high.

Miaou et al. (1993} and the Vogt-Bared (1998) FHWA report find that a higher percentage of truck
traffic is associated, respectively, with fewer truck crashes and fewer crashes on rural roads. Miaou
et al, (1993, p. 62) suggest that perhaps “for a constant vehicle density, as percent trucks increases,
the frequency of lane changing and overtaking movements by cars decreases.”

2 D. Blower, K.L. Campbell, and P.E. Green, “Accident Rates for Heavy Truck-Tractors
in Michigan,” Accident Analysis and Prevention 25 (3): 307-321, 1993.

TR, Elvik, “Meta-Analysis of Evaluations of Public Lighting as Accident Countermeas-
ures,” Transportation Research Record 1485: 112-123, 1995.
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Speed

design speed on four-legged
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rural intersections. Vogt and Bared (1998} find the same for posted speeds on mral three-legged and
four-legged intersections. Pickering, Hall, and Grlmmer {1986) observe that higher operating speeds
at three—legged intersections are associated with more right-turn crashes, but with fewer crashes of

Rauver and Harwood (1996) find h rates increase with increasin
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Bad weather is recognized as a contributing factor to crashes. Shankar, Mannering, and Barfield
(1995) call attention to the interaction of extreme weather and extreme alignment. Miaou et al.
(1993) note the relevance of weather to truck crashes. Fridstrem et al. (1995 in a study of
Scandinavian roadway crashes find weather significant, although bad weather does not always
increase crashes, Vogt and Bared (1998), using a regional, but not particularly local weather variable
in Minnesota, find that weather conditions do not have a strong effect on crashes.

MODEL FORMS AND FUNCTIONAL FORMS

State of the Art

In recent years, a consensus has formed in favor of modeling crashes as discrete, rare, independent
events. In a static environment, such events can be characterized by their mean number A per unit
time and are simply represented by a Poisson random variable, i.e., the probability that y crashes will
be observed per unit fime 1s:

. ¥
P(V:u\_p’t_&_
L S Fa =
!
wherey =0, 1, 2, ... To proceed further, one analyzes the mean A in terms of familiar variables that
characterize or partially characterize the crash location {in our case, an intersection). Thus, one
assumes that
A =7 ExhBh
28 1. Fridstrem, J. Ifver, S. Ingebrigtsen, R. Kulmala, and L.K. Thomsen, “Measuring the
Contribution of Randomness, Exposure, Weather, and Daylight to the Variation in Road

Accident Counts,” Accident Analysis and Prevention 27 (1) 1-20, 1995.

17
P4



that is, A is taken to be a function of suitable variables x,, X, ..., X,, pertaining to the intersection.

This function is also assumed to depend on parameters [3; that are independent of the intersection.
The form of the fimction Fic un to the modeler e except that if 15 H:'mn_rpd not 1o \HP](! neg ative values.
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At different intersections, the variables x; may take dzf ferent values, so dif; fcmnt intersections may
have different mean crash counts A.

............. M. Pmamnd Cavimn 1o tha ganasalizad linear anas
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m
Ao=exp (Bx, + Bx, + ..+ P x) = exp (§ oo Bx) 2.1

This form guarantees a non-negative integer vatue for the mean number of crashes per unit time. A
major attraction of the form is that it is possible to estimate the coefficients 5, from data using
methods originated by Nelder and Wedderburn (1972)* and implemented by the software packages
SAS and LIMDEP. If the first variable x, is taken to be 1dentically equal to 1, the combination in
equation (2.1) includes a constant term f3,, sometimes called the intercept term. Another advantage
is easy comparability with existing models since the form A = exp(B, + B,x, + B,x,) can easily be
converted to the multiplicative form A = K{v)"' (v,)*, where K = exp(B,), v, = exp(x,), and y, =
exp(x,). The multiplicative form is common in earlier studies.

The model form equation {2.1) 1s based on the assumptions that crashes are independent events, that
suitable input variables x; are discoverable taking fixed values at the intersection on some
appropriate time scale, and that the functional form in equation (2.1) is superior to other possible
forms. It is useful to act as if these assumptions are approximately frue, 1n part because they vield
an analytically tractable generalized linear model and in part because they have proved their worth
elsewhere in biology and economics.

A refinement of this approach, described in Hauer, Ng, and Lovell (1988), 1s to acknowledge that

€
the mean for a particular intersection is unknowable nnd to consider an imaginary nopulation of
intersections all having the same values for the variables x; and having means that are grouped
around the value A in equation (2.1). The variance of the crash counts of the intersections in this

population depends on further assumptions, but can be taken to have the form:

A+ KN (2.2)

10l + +1- o i e A —~

where K is a 'palamcm appiicaoie o e entire pup‘umuuu but ulucpcuucut of the pai'ticu‘lar
intersection, called the overdispersion parameter. The variance of crash counts has two components,
the first due to Poisson variation and the second due to differences among members of the

2 1.A. Nelder and R.W. Wedderburn, “Generalized Linear Models,” Journal of the Royal
Statistical Society, Series A, 135(3): 370-384, 1972.
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population, the latter perhaps due to omitted variables. Dean and Lawless (] 989y propose that the
mean of individual intersections in the population is equal to a multiplier times the value A in
equation (2.1}, and that the multiplier is a continuous positive random variable with mean | and
variance K having the same distribution at each intersection. From this, they derive the overall
variance {2.2). The number of crashes Y per unit time at individual intersections is distributed
according to a compound Poisson distribution: Y given the mtersection mean is a Poisson variable,
but the intersection mean itself is a variable. It is customary to assume that this variable obeys a
gamma distribufion on each population and fience that Y obeys a negative binomial distribution.

9N K?L}L)y(l KT

T(1/Ky ~1+K

PY = 3) = ()
y.

With the assumptions that A 1s given by equation (2.1} and that K is independent of {x;}, it is
possible to estimate the parameters {f;} and K in LIMDEP and SAS by maximum likelihood
methods. When prior crash experience is known at a particular intersection, along with the variables
X;, the negative binomial form makes it possible to revise the estimated crash count for a new time
period by empirical Bayesian methods. See the discussion on p. 15 below.

Relevant Literature

Many of the studies alluded to earlier in this chapter have used Poisson and negative binomial
models. Hakkert and Mahalel (1977) use a Poisson model with some refinements to study
intersection crashes. Pickering, Hall, and Grimmer (1986), in their study of tee intersections, use
a Poisson model along with the generalized linear model technique (and the software packages
GENSTAT and GLM). Maycock and Hall (1984),* studying roundabouts, and Hauer, Ng, and
Lovell (1988), studying urban intersections, employ the negative binomial technique. A sampling
of other studies that have used negative binomial models includes: Miaou et al. (1993} - truck
roadway crashes; Bonneson and McCoy (1993) - rural intersection crashes; Knuiman, Council, and
Reinfurt (1993) - divided highway crashes; Fridstrem et al. (1995} - roadway crashes; Poch and
Mannering (1996)* - urban intersection crashes; Bauer and Harwood (1996) - intersection crashes;

30 . Dean and 1.F. Lawless, “Tests for Detecting Overdispersion in Poisson Regression
Models,” Journal of the American Statistical Association §4 (406): 467-472, 1989,

3T G. Maycock and R.D. Hall, Accidents at 4-Arm Roundabouts. Laboratory Report 1120,
Transport and Road Research Laboratory, Department of Transport, Crowthome, Berkshire,
United Kingdom, 1984.

M. Poch and F. Mannering, “Negative Binomial Analysis of Intersection-Accident
Frequencies,” Journal of Transportation Engineering 122 (2): 105-113, 1996,
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and Vogt and Bared (1998) - rural segment and rural intersection crashes.

Miaou et al. (1993), Bauer and Harwood (1996), and Vogt and Bared (1998) make usc of both
Poisson and negative binomial models. Miaou and Lum (1993)* compare two linear regression
models and two Potsson models, prefer the latter, and indicate thai the negative binomial or “double
Poisson” may be even better. Miaou (1994)™ compares Poisson models and negative binomial
models and indicates that both kinds of models have their place, with negative binomial to be
preferred if the data are sufficiently overdispersed.

Empirical Bayesian Methods

Hauer, Ng, and Lovell (1996, p. 56) note that the negative binomial model permits past information
about an intersection to be incorporated into modeling with relative ease. The essential idea is that
intersections in the imaginary population with identical values of {x;} have their mean grouped
around the value A in equation (2.1), but past experience at an intersection gives some indication of
where in this grouping the intersection mean is likely to be. If an intersection has had A crashes in
the past T time units, then the grand mean A and the crash count variance A + KA* are no fonger
applicable. Instead, for the sub-population with the given crash experience, crash counts stili obey
a negative binomial distribution, but the appropriate grand mean 1s:

_ M1+ 4K

A 2.3
new 1 + KA‘T ( )
and the total variance of crash counts on members of this sub-population is:
; 2
A’)’.’é‘w v K}?E’W( new)
where
K
e (2.4

Rew 1 4 AK

The overdispersion parameter decreases in equation (2.4} if A > 0, and the grand mean increases or

3 §.-P. Miaou and H. Lum, “Modeling Vehicle Accident and Highway Geometric
Design Relationships,” Accident Analysis and Prevention 25 (6): 689-709, 1993.

# S.-P. Miaou, “The Relationship Between Truck Accidents and Geometric Design of
Road Sections: Poisson Versus Negative Binomiat Regressions,” Accident Analvsis and Pre-
vention 26 (4): 471-482, 1994.
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decreases in equation (2.3) depending on whether the crash experience is above average (A > AT)
or not.

Further discussion of this methodology is to be found in Hauer, Terry, and Griffith (1994),%
Pendleton (1996),%° Hauer and Persaud (1996), and the book of Hauer (1997).”
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Hauer’s book C}AplUltib a variety of issues that re
that if the goal is increased safety, cross-sectional studics are madequate by thcmselves Before-and-
after studies are needed, and the effect of “regression to the mean” must be taken into account, This
can be done with suitable models, based in part on cross-sectional studies, for reference populations
that incorporate year-by-year crash data. Methods for predicting future trends are offered, along with
ways to compare the safety of treated and untreated intersections in light of the models and crash
history.
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Alternative Functional Forms

Hakkert and Mahalel (1978) use a traffic flow index and a “sum of products™ approach to modeling
intersection crashes, Hauer, Ng, and Lovell (1988} analyze crashes by patterns and have a model
for each approach pattern. Thus, it is desirable to have enough data by pattern to build separate
models for each, Then the mean count for each type of crash can be summed to obtain an overall
mean.

Miaou (1994) considers, in addition to Poisson and negative binormial models, zero-inflated Poisson
(ZIP) models. These are Poisson models adjusted by increasing the probability of zero crashes (and
rescaling the remaining probabilities so that the sum is still one). Miaou concludes that these are
useful when there 1s underreporting of crashes, so that some locations have undeserved zero crash
counts.

Bauer and Harwood (1996) do Poisson and negative binomial modeling, but they also exhibit a
lognormal model where the log of the number of craghes is regarded ag a normal variable with mean
u and variance ¢°. Log u is assumed to be a linear function of intersection variables, while the
variance is constant. They find this model useful for classes of high crash intersections (where few
intersections have zero crashes in the time period under consideration).

% E. Hauver, D. Terry, and M.S. Griffith, “Effect of Resurfacing on Safety of Two-Lane

Rural Roads in New York State,” 7 mnsportazzon Research Record 1467: 30-37, 1994,

* 0. Pendleton, Evaluation of Accident Methodology, Report No, FHWA-RD-96-039,
Federal Highway Administration, McLean, Va., 1996,

37 E. Hauer, Observational Before-Afier Studies in Road Safety, Pergamon Press, Oxford,
UK., 1997.
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Lau and May (1988 use Classification and Regression Trees (CART) to study intersection crashes.
Data are divided into classes by binary trees of multiple levels until terminat nodes are reached (ones
from which little further improvement can be made). A split is based on dividing a samplc into two
sub-sarmples so that the combined weighted variance of the two strata is a minimum for the residual
crash count (left over from the previous split). This method seems io be applicable when most
variables are categorical rather than continuous. Predicted crash counts under this approach may be
modified on the basis of individual intersection histories.

Joksch and Kostyniuk (1998)* apply smoothing techniques to study the relationship between
intersection crashes and major and minor road ADT. They consider crashes by type al stop-
controtled and signalized intersections. After some data smoothing, surfaces are developed to
represent crash as a function of major and minor road ADT for each class of intersections. They find
that the crash surface for urban signalized intersections in California contains a “ridge™: for
reasonably large major road volumes, as minor road ADT increases, crash counts rise to a maximum
near 20,000 vehicles per day and then decrease for higher minor road traffic. Figure 23 (op. cit., p.
76) also shows a plateau and perhaps a ridge as major road ADT increases.

Special Studies

Pickering, Hall, and Grimmer (1986) study intersection crashes within 20 meters of rural tee
intersections and within 100 meters of these intersections. They find that crashes from 20 to 100
meters away are three or four times as common as crashes on segments of similar length, Far from
the intersection center, head-on crashes are more frequent; close to the center, turning crashes
dominate. They raise the delicate issue of what an intersection-related crash really is.

Hauer and Hakkert (1988)™ estimate that fatal crash counts are accurate to within 5%, serious injury
crash counts to within 20%, and minor injury counts to within 50%. Reporting varies with the
driver, the location, and the time. The count of fatalities can also vary with the guality and
timeliness of medical attention, even with progress in medicine. Property damage crashes have
threshold reporting requirements and are subject to inflation as repair costs rise. These
considerations and similar ones are important caveats for modelers.

B¥M.Y.-K. Lau and A.D. May, Accident Prediction Model Development: Signalized
Intersections, Research Report UCB-ITS-RR-88-7, Institute of Transportation Studies,
University of California, Berkeley, Ca., 1988.

% H.C. Joksch and L.P. Kostyniuk, Modeling Intersection Accident Counts and Traffic
Volume, Report No. FHWA-RD-98-096, Federal Highway Administration, McLean, Va.,
1998.

% E. Hauer and A.S. Hakkert, “Extent and Some Implications of Incomplete Accident
Reporting,” Transporitation Research Record 1185: 1-10, 1988,
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The statistical abstract of Tessmer (1996)*' reports that from 1975 to 1993, there were more than
420,000 fatal crashes in rural areas versus about 300,000 fatal ones in urban areas in the Fatal
Accident Reporting System (FARS), despite fewer vehicle-miles driven (14.2 trillion versus 19.7
tritlion (22.9 trillion versus 31.7 trillion vehicle-kilometers)). Also noted was the rural time delay
in receiving medical attention. About 77% of the rural fatal crashes involved trucks versus about
62% of urban fatal crashes, A higher percentage of single-vebicle fatal crashes, and a lower
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CONCLUSIONS
The issues in model development include: model form, choice of variabies, and interpretation.

Models of the Poisson and negafive binomial types, with mean a generalized linear function of
covariates, have the dual virtues of being tractable computationally with present software and of
capturing the discrete, random, non-negative integer character of crash counts. The Jog-linecarity in
these models also permits equations of traditional muitiplicative types, and hence easy comparison
with the results of earlier studies.

Although coefficients in both the Poisson and negative binomial types tend to be similar, the
negative binomial has additional advantages. The presence of an overdispersion factor offers a way
1o account for omitted variables (the larger this parameter is, the more important such variables are).
It also offers the possibility of combining the given model with empirical data from the past at a
given intersection to obtain Bayesian refinements of the model predictions.

With regard to choice of vartables, there is an infimity of possibilities, although resources are finite.
Most of the variables discussed above are collected in this study, with the exception of weather.
These variables further proliferate through mathematical transformations, e.g., composite measures
of horizontal and vertical alignment near an intersection, or sight distance averages, or estimates of
daily traffic by incoming and outgoing intersection leg. Transformations are suggested by past
practice and common sense, but new combinations are always posstble. In the analysis of the sample
data in Chapter 4, correlations between crashes and variables are examined. These correlations, and
successive ones found between residuals and variables, serve to select the variables used in the
models. The selection should also be influenced by engineering judgment so that vartables found
to be important in the literature, or considered so by designers, receive full consideration.

influence crashes. However, a quantitative agreement on their relative importance has not been

Finally, there is the question of model interpretation. The studies above note that many factors

4 J M. Tessmer, Rural and Urban Crashes: A Comparative Analysis, Report No. DOT-
HS-808-450, U.S. Department of Transportation, National Highway Traffic Safety
Administration Technical Report, Washington, D.C., 1996.
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achieved. What a model can do, chiefly, is to summarize sample data. [t can indicate which
variables are most important with regard to the crashes on the sample intersections. Because of
collinearity (i.e., two or more variables that are strongly dependent through design or coincidence),
there is no guarantee that for variables present in the model, causation has been established. A
model selects the variables that look “best” on the given data, and related variables may thereby be
omitted. It is thus wise to identify families or clusters of variables that are related and tentatively
view these families as the causal factors. Since families overlap, this task is not simple.

Using a model that summarizes to predict is best done with even more engineering judgment. The
model summarizes a data set, but there are sampling and non-sampling errors in the data. Often what
one wishes to predict has new or different factors mfluencing it. One is dealing with a moving
target. Thus, judgment and some flexibility are in order.
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3. DATA COLLECTION

The data collected in this study come from two primary sources: Highway Safety Information System
(HSIS) files for California and Michigan, and field visits to the intersections made by Pragmatics
personnel.
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collection techniques, and data hmltatlons.

THE POPULATIONS
The States and the Three Data Classes

An issue of early importance for this study was the selection of States in which to carry out the
sampling. HSIS has extensive files for eight States - California, Illinois, Maine, Michigan,
Minnesota, North Carolina, Utah, and Washington. File formats and contents vary from State to
State. For three of the States - California, Michigan, and Minnesota - separate HSIS interseciion
files exist, while for another three - North Carolina, Utah, and Washington - there is no HSIS
intersection information. Maine has node-and-link files (intersection-and-segment); [1linois treats
intersections as segments of zero length. California gives details about signal characteristics; Illinois
gives details about medians. Neither Illinois nor Michigan has minor road ADT available, except
for cases in Michigan where the mmor road, like the major road, is a State road.

The three intersection classes in this study were originally intended to be signalized three- and four-
legged rural intersections of two-lane roads, along with four-legged rural intersections of a four-lane
road with a two-lane stop-controlled minor road. However, examination of data bases for California,
Michigan, and Minnesota indicated that there were very few signalized three-legged rural inter-

sections of two-jane roads. The same indication came from information on three State routes in
Washinoton., See Table 1. “Other” refers almost Pvr‘]nqnuﬂ]v to stop-controlled on the minor road,
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TABLE 1. Frequency of Signalized Rural Two-Lane Entersections in Four States

Rural two-lane roads Three-legged intersections Four-legged intersections
signalized other signalized other
California - 1995 14 (0.2%) 6126 (99.8%) | 35(1.9%) 1832 (98.1%)
Michigan - 1954 | 16 (0.2%) 6513 (99.8%) | 138 (4.1%) 3722 (95.9%) |
Minnesota - 1992 4(0.3%) 1307 (99.7%) 11 (0.7%) 1591 (99.3%)
Washington* - ca. 1993 2 (0.3%) 645 (99.7%;) 10 (5%) 190 {95%)

*Routes 002, 009, 101 only.
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but includes a few cases of flashers, and stop-controls on the major road. Of chief concern 15 not the
low percentages, but rather the low absolute numbers, which might make acquisition of samples of
adequate sizes difficult. Thus, these intersections were replaced by three-legged rural intersections
with four-lane major roads and two-lane stop-controlled minor legs.

Table 1 reveals a similar, but less drastic, shortage of four-legged signalized rural intersections of
two-lane roads. California has relatively few of them, especially for such a large State. On the other
hand, Michigan appears from this table to hay ¢ an adequate number for sampling.

In order to gain useful variety in the analysis, California and Michigan were chosen for the modeling
effort, with the possibility, if resources permitted, of addition of a third State jater.

Constraints imposed on the populations from which the samples were chosen were as follows:

1. Three-legged rural intersections, major road four-lane, minor leg two-lane stop-controlled:
median width less than or equal to 36 feet {11 meters) on major road, all approaches two-
way, stop-controlled on minor leg only.

2. Four-legged rural intersections, major road four-lane, minor legs two-lane stop-controlied:
median width less than or equal to 36 feet (11 meters) on major road, all approaches two-
way, stop-controiled on minor legs only.

3. Four-legged rural signalized intersections, major and minor roads two-lane: all approaches
two-way.

Implementing these constraints was not completely straightforward. The California (CA) and
Michigan (MI}) HSIS intersection files had no information on whether intersections were rural or
urban, nor on median widths, while MI’s intersection file had no information on number of lanes.
To obtain these items, the intersections were linked with segments in the CA and MI Roadlog files
where such information was available.

For CA, a Roadlog variable entitled RU IO was available to indicate whether the segment was rural,
urbanized, or urban and inside a city or outside a city. For this study, we elected to use those
marked as “rural, outside city” and did not include those that were rural, but inside or partly inside
a city. The numbers for CA in Table 1 would have increased by only a small amount if other rural
categories were added. For MI, a Roadlog variable entitled RURURB, with three rural categories
(rural, rural dense small city, and rural small city boundary), was avatiable. In the case of Michigan.
all three categories were allowed. Roughly 50% of the Michigan intersections fell under “rural” and
roughly 50% under “rural dense small city,” and very few feli in the third category.

An intersection in CA or MI was considered rural if’ a neighboring segment was rural according to

the classification above. In addition, in the case of Michigan, since the intersection file did not
inciude a lane count, the major road was assumed to be either two-lane or four-tane, depending on
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how the segments adjacent to the intersection were described in the Michigan Roadlog file.

Pilot studies were conducted from bases in Sacramento, CA, and Lansing, M1, in March and May
1997, respectively, with a view to visiting all intersections sufficiently close to the State capitals as

P S

Tesources pt:HIliLu:u

In the case of California, 115 intersections in Districts 3, 4, 10, and the northern part of 6 (within
approximately 250 miles (402 kilometers) of Sacramento) were qualificd for membership in the
populations on the basis of HSIS data. In Michigan, the pilot study concentrated on signalized
intersections, and 66 such intersections were identified in Districts 5, 6, 7, §, and 9 from the HSIS

data base.

In both States, photologs were examined for all such intersections. [f the photolog indicated that the
Intersection was not rural (e.g., curb parking, significant urban build-up for several blocks) or the
lane count was incorrect or the signalization (several flashers were found that had been listed as fully
signalized) or there was an adjacent intersection within 500 feet (152.4 meters) on the major road,
then the intersection was eliminated. Thereafter, site visits were made to most of the intersections,
additional intersections were eliminated by the site visit, and data were collected at the remaining
ones. Even among those for which data were collected, in some cases, 1t was unclear whether they
should be considered rural or urban. Table 2 indicates the disposition of the pilot study samples.

TABLE 2. Pilot Study Intersections in California and Michigan

California Michigan
sample units - three-legged 28
sample units - four-legged 27
sample umts - signalized 10 23
Y intersections 6
disqualified from photologs 25 13
disqualified from visits 13 17
too remote/isolated 6 13
Total 115 66

\ties that were to affect the entire study. Photologs did not match what

Table 2 reveals some difficu ere to affect the entire s 1010

was in the HSIS data base in a fair number of cases, and site visits revealed that changes not shown
in the photologs had also taken place. This was particularly true of the Michigan signalized
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intersections. The Y intersections, three-legged intersections with two legs diverging from the third,
were included in the pilot study, but it was later decided to eliminate them from the full data
collection in nart because of their relative rarity. A few intersections in hoth States were excluded
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from visits on the grounds that they were too remote or isolated.

The issue of how to handle remoie and/or isolated intersection sites 1s a rather delicate one since it
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relates to both resource L,Uu::uulpuuu ana sampic integrily. nurd: intersec
between. To conserve resources, it is advisable to select intersections that are in close proximity to
one another and to a suitable base of operation where junior highway engineers can be recruited for
field work. With Sacramento or Lansing as a base, there were numbers of intersections each of
which would require an overnight trip for two people, with driving time to and from and downtime
between morning and evening traffic counts (if the site was not disqualified). While distances in
California are well-known, it is less well-known that the distance from Lansing, Michigan, to the
farthest reach of Michigan’s Upper Peninsula, 550 miles (885 kilometers), is greater than Lansing’s
distance to New York City, about 500 miles (805 kilometers). Paradoxically, the most classically
rural intersections, ones without suburban or small town features, are likely to be far from each other
and far from suitable bases of operation and thus require disproportionate resources to visit. If
intersections are close to each other, within a few miles, so that a team can visit several in the same
day, the independence of the sample may be jeopardized. If they are close to a central point, such
as a major city or the State capital, they are likely to be less rural and to be in transition.

During the pilot studies, in addition to examination of photologs and field work, construction plans
and aerial photographs were reviewed, and the possibility of obtaining crash reports was
investigated. Aerial photographs, photologs, and some (but not all) horizontal construction plans
were available in the Traffic Operation Office at Caltrans headquarters in Sacramento. More
complete computerized vertical and horizontal plans were not available, since the computer
application that accessed them was undergoing major repair and renovation. At a later date, this
system was running, but some plans were found to be mussing and others were difficult to locate.

District Offices in California, 11 in all, also have construction plans and hard-copy crash reports, but
these offices are understaffed and the Proiect Team was told that retrnieval would take much time
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Caltrans personnel did indicate that the HSIS crash file for California would have numerous
variables from which crash details could be reconstructed. Michigan had aerial photographs for
many intersections in Southern Michigan taken in the years from 1972 to 1988, and some negatives

£ Tt rn i yvonre MMichioan alen had a2 3
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and hanging files, depending on the year), although a fire in 1955 had destroyed some plans and
others were misfiled. Road segments will have as many as 50 jobs and corresponding plans. For
a minor job, the plan will not show the alignments of the road. The Project Team was told that, ir:
Michigan, confidentiality laws make crash reports difficult to obtain since preliminary deletions by
State employees are required. Although Michigan photologs were one cyele more recent than those
of FHWA in McLean, Virginia, numerous discrepancies were found among the HSIS files, the

photologs, and site visit observations.
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In both the California and Michigan pilot studies, field work was done at all interscctions. The
typical routine was a morning site visit to hand-count traffic (on specially designed tally sheets).
Thereafter, radar guns were nsed to determine operating speeds for samples of vehicles approaching
the intersection on each leg. These measurements were made at discreetly placed locations before
vehicles began to slow for the intersection. Speeds would be determined only for the lead car in a
platoon, and the angle between the radar path and the direction of vehicle travel was noted to permit
calculation of true travel speed. Typically, 25 measurements would be made if the leg traffic was
adequate. If the traffic was light, as many measurements as a 13- to 20-minute stay would permit
would be made. Measuring wheels were used to pace off sight distances. Other intersection features
and geometry were recorded, as well as signal characteristics at signalized intersections. In the late
afternoon, a second traffic count would be done. In the case of Michigan, where only signalized
intersections were visited, computerized plate counters were also used to measure minor leg traffic.
The plate counters were nailed to the minor road at mid-day and left there for 24 hours. They were
recovered on a subsequent visit to the intersection and unwrapped. Data were downloaded from
them and they were recharged and rewrapped for the next count. Three people were required for
placement of the plate counters since traffic had to be disrupted. For all site visits, permits were
required from District Offices, and safety precautions, including wearing of hardhats and orange
vests, and placement of cones and signs, were taken.

Pilot study data were subsequently used to prepare some small special studies. Three kinds of speed
data were compared: posted speeds obtained by inspection along intersection legs, operating speeds
measured by radar guns, and speeds recorded by the plate counters. The plate counters also
permitted a determination of 24-hour truck percentages, and these could be compared with observed
peak-hour truck percentages from the manual traftic counts. To assess the “intersection-relatedness”
of crashes, a review was also undertaken on the area of influence of an intersection for a few pilot
study intersections. The results of these investigations are reported in the appendix to this report.

SAMPLE SELECTION

After both pilot studies were completed, the studies were assessed and plans were made for the
subsequent main data collection effort. The chief decisions made were to restrict attention o tee
intersections and omijt Y intersections,” to measure horizontal and vertical alignments at each
intersection rather than attempt to extract this information from plans or photos, to discontinue the
minor leg plate counts, and to follow an informal sample selection plan.

4 A three-legged intersection is a T intersection (or tee) when “two of the three intersec-
tion legs form a through road and the angle of intersection is not acute™; it is a Y intersection (or
wye) when “all three intersection legs have a through character or the intersection angle with the
third intersection leg is small.” These definitions are taken from p. 836 of 4 Policy on Geometric
Design of Highways and Intersections {also known as the “Green Book™), American Association of
State Highway and Transportation Officials, Washington, D.C., 1994,
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Three-legged intersections for the main data collection effort were restricted to T intersections

because of the relative scarcity of Y intersections and in the interest of sample homogeneity. Sample
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homogeneity contributes to successful modeling by removing variables tha

However, such homogeneity can only be achieved to a limited extent. Too many restrictions (e.g.,
requiring that all intersections have lighting, that they all have medians of a certain type, that they
have ADT in a certaln narrow range, etc.) can be counterproductive. There may be oo few
intersections meeting alt the constraints to be useful for modeling, and data collection from all of
them to maximize samiple size may be too expensive if they are geographically dispersed. The
distinction between T and Y intersections 1s of recognized importance, T intersections are favored
by intersection designers, and restricting the sample to T intersections was judged to pose no

probiem.

Collection of alignment data during the field work and discontinuation of minor leg plate counts
were undertaken for reasons of economy.

In both Michigan and California, the availability and accessibility of plans showing recorded
alignments were in doubt. Plans and photos were sought for sub-samples of the pilot study samples
in both States, and for roughly 30% of the intersections in the sub-samples, no information could be
found. Since morning and afternoon traffic counts were to be done at each intersection, acquisition
of alignment data at midday did not seem to be unduly burdensome for field workers. At
intersections visited in the pilot studies, alignment data had not been collected, but revisits during
other field work could be done without hardship.

With respect to the plate counters, the pilot study revealed that they provided good data, but that they
were resource-intensive and that the data were not essential to the overall effort. The plate counters
are HISTAR units that detect changes in the magnetic field above the roadway. The associated
computer data are generated and printed with NU-METRICS software. [nformation available
includes: counts of incoming vehicles by type, counts of occupants per vehicle, vehicle speeds,
weather conditions (temperature and precipitation), and gaps between vehicle arrival times. During
the Michigan pilot study, the weather variables did not seem reliable, and the counters did not work
properly on occasion. At two intersections, they were placed on major roads for which ADT was
available. The count at one of these roads was 4,400 vehicles per day versus 6,400 vehicles per day
according to HSIS files. The difference is that the plate count data is for one day in 1997 and the

HSIS data ig a QfﬂfP estimate faor 19G63.1995. The nlmp counters do not determine turn{nlu;
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movements, and manual counts still have to be done at each intersection to obtain these. The plate
counts, as already noted, require two visits spaced 24 hours apart with adequate personnel to ensure
safety during placement and removal. Thus, to conserve resources, they were omitted in the main
data collection effort. For Michigan intersections where minor road ADT was not available, major
road ADT plus 1997 peak-hour traffic counts, in particular ratios of traffic by movement, were used
to estimate minor road ADT. This method, while making use of 1997 data to estimate minor road
ADT for earlier years, is arguably more reliable than using an absolute 1997 count.
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Both pilot studies revealed that field work at rural intersections is time-consuming. Rural
intersections suitable for the study, especially signalized ones, tended to be few and far between, as

noted earlier. In some cases, overnight lodgings were required both before and after in order for

Project Team members to get to a site at an adequately early hour and remain there until an
adequately late hour. During the Michigan pilot study, a number of intersections thought to be in
the population on the basis of HSIS files and Michigan photologs were found to be ungualified at
a site visit, primarily because they were not at all rural.

An informal sampling pian, as follows, was developed. Complete lists of intersections whose HSIS
records satisfied the constraints had been developed. All intersections within approximately a 3- to
4-hour drive from Sacramento or Los Angeles or Lansing were automatically included 1n the sample,
together with a few other selected intersections at farther distances. Photologs were reviewed for
all of these, some were disqualified as a result, and with the exception of those that had been in the
pilot study and a few especially remote ones in California, all of the remaining ones were pre-visited
prior to the field work. The purpose of the pre-visit was to ascertain whether each intersection was,
in fact, qualified — no legs or medians closed, no offsets, no additicnal lanes or legs, number of
lanes unchanging out to £800 feet (243.8 meters), no urbanization, with signalization or signage as
advertised. In addition, a large number of intersections were eliminated because they were too closc
to other intersections of the same type and were likely to have strongly correlated data values. This
was especially true for the three-legged and four-legged non-signalized intersections. In both States,
such intersections tended to be grouped on a relatively small number of highways and tended 1o be
placed along these highways in close sequence.

Pre-visits by senior Project Team members were found to be very useful since field workers would
not spend unnecessary time at unqualified intersections and the senior members of the team could
make experienced judgments about the appropriateness of intersections.

The final samples, including pilot study observations, are shown in Table 3.

TABLE 3. Samples as Proportiors of Neminal Populations

CA MI Total
3-legged 60/302 (19.9%) 24/93 (25.8%) 84/395 (21.3%)
4-legged 547150 (36%) 18/49 (36.7%) 727199 (36.2%)
Signalized 18/27 (66.7%) 31/100 (31%) 49/127 (38.6%)

The first number in Table 3 is the sample size and the second is the nominal population size in the
State. These numbers are adjusted from Table 1 by elimination of duplicate observations and
photolog reviews, but the denominators include numerous dependent intersections and, especially
in the Michigan signalized case, intersections that are no longer rural. The denominators also
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include remote intersections that were not visited for lack of resources. It should be kept in mind
that some of these would have been disqualified if they had been visited.

The informal sample selection method raises the issue of representativeness. it should be noted that
crash data were not consulted in selecting the samples, but that there was some tendency to favor
larger ADT intersections or ones with more irregular alignment when, for example, only cne ol two
nearby intersections could be chosen because of dependence. In addition, many, but not all, of the
most remote intersections in both Statc: were omitted from the samples.

DATA COLLECTED

The data collected in this study and the sources are shown in Table 4.

Highway Safety Information System (HSIS) Data
Average Daily Traffic (ADT) data and crash data were extracted from HSIS files.

ADT data were exiracted from HSIS Intersection and Roadlog files. For California, major and minor
road ADT were available in HSIS intersection files for the years 1993, 1994, and 1995. For
Michigan, ADT data were available in HSIS Roadlog files for segments of State roads, although
1993 data were unavailable and had to be interpolated from 1992 data.

HSIS crash variables for 1993, 1994, and 1995 were consulted. These include Accident Location
variables, Accident Number, Accident Severity, Accident Type, Number of Vehicles, Vehicle
Motion Prior to Accident (MISCACT1). All variables, but the last, are in the HSIS Accident file for
the State. The last is in the HSIS Vehicle file. '

Traffic-Count Variables

For all intersections in the study, field counts were done on traffic during morning and evening
hours. Due to limited resources, the counts were not done at a fixed time, but were typically done
in the morning for about 45 minutes between 7:00 am. and 9:30 a.m. and in the afternoon between
3:30 p.m. and 6:00 p.m. The counts were done on non-holiday weekdays.

In a few cases in Califoria, no traffic was seen emanating from the minor road during the hours of
visitation. This happened at two three-legged intersections and at two four-legged intersections, all
of them in California on Route 395. The first two intersections had incoming traffic, but the last two
had no traffic, incoming or outgoing. These intersections are in high-altitude regions near Mono
Lake and Independence, the counts were made in the fall of 1997, and traffic may have been reduced
for seasonal reasons.
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TABLE 4. Variables Collected in the Study

IVariable I Meaning . IUnits ’ ISource l
W

cnty rte California (CA) route identifier HSIS
Identifiers - cntl_sec Michigan (MI) route identifier HSIS
milepost intersection center milepost along route | miles HSIS
ADTI CA average daily traffic on major road | vehicles HSIS
at intersection by year per day
Traffic - -
ADT?2 CA average daily traffic on minor road | vehicles HSIS
1993-95 at intersection by year per day
(MI 1992
instead of | ADTM MI average daily traffic on adjacent vehicles HSIS
MI 1993) segment of State road by year per day
RAWMPCjj no. of cars traveling from legitolegj | vehicles Field
in morning count period
RAWMTRIj | no. of trucks traveling from leg i to leg | vehicles Field
Peak j in morning count period
Traffic M_HR duration of morning count period hours Field
MBEG start time of morning count period clock-hours | Field
RAWEPCij no. of cars traveling from legito legj | vehicles Field
in evening count period
RAWETRjj no. of trucks traveling from legito leg | vehicles Field
j in evening count period
E HR duration of evening count period hours Field
EBEG start time of evening count period clock-hours | Field
HAZRAT Roadside Hazard Rating within £250 ft | 1, 2, 3,4, 5, | Field
of intersection center on major road 6,7
NODRWYRI1 | no. of residential driveways within 0,1, .. Field
Roadside +250 ft of intersection on major road
NODRWYCI1 | no. of commercial driveways within 0,1,.. Field
+250 ft of intersection on major road
NODRWYR2 | minor road counterparts for signalized | 0, 1, ... Field
NODRWYC2 | intersections only \

1 mi=1.61km,1ft=0305m
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TABLE 4. Variables Collected in the Study (continued)

Variable Meaning Units Source
LTLN1 no. of left-turn lanes on major road 0,1,or2 Field
Channel- RTLN1 no. of right-turn lanes on major road 0,1,0r2 Field
1zation LTLN2 no. of left-turn lanes on minor road 0,1,0r2 Field
RTLN2 no. of right-turn lanes on minor road 0,1,0r2 Field
MEDWIDTH1 | median width on major road feet Field
MEDTYPE median type of major road none, curbed, | Field
Intersection » painted, other
Geometry | DRINCMP - | direction of increasing mileposts E for east, N Field
along major road for north
ANGLEi angle between increas. dir. of major degrees Field
road and left leg (i =1) or right leg
(i=2)
SDi longitudinal sight distance along legi | feet Field
of major road, 1 = 1 or 2, or of minor
road (signalized int. only), 1 =3 or 4
Sight ; . . S . . .
Distances SDLi1 left mght distance along l.eg iof minor | feet Field
road, i = 3 or 4, or of major road
(signalized int. only), leg =1 or 2
SDRi right sight distance along leg i of feet Field
minor road, 1 =3 or 4
HBi beginning point of curve no. i (if any | feet+ from Plans
Horizontal portion of curve is within +800 ft of intersection
alignment intersection center along major road) | center
on major . ) )
road HEi end point of curve no. 1 feet + Plans
(and minor
r9ad O.f DEGHi degree of curve, curve no. i degrees per Field
§1gnahzed hundred feet
inter- . —
sections) DIRi direction along increasing direction of | L for left, R Field
major/minor road of curve no. 1 for right
1ft=0.305m
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TABLE 4. Variables Collected in the Study (continued)

Variable Meanin Units Source
Vertical VBi beginning point of curve no. 1 (if any feet + from | Field
alignment portion of curve is within £800 ft of intersection
on major intersection center along major road) center
ro:ad (and VEi end point of curve no. feet + Field
minor road
of |GBi grade prior to curve no. i % Field
signalized - ; . -
inter- GEi grade after curve no. 1 %o Field
sections) GRADE1 grade of major road, if only one % Field
Speed SPDLIMi posted regulatory speed on leg i, if seen mph Field
Limits
POSTADVi posted advisory speed on leg i, if seen mph Field
SIG TYPE signal type - pre-timed, actuated, or semi- Field
Signali- actuated
zation . . .
PROT LT protected left turn - multiphasing; 0,1 Field
1 for yes, O for no
LIGHT 1 if lighting is present, 0 if not 0,1 Field
Miscel-
laneous terrain flat, rolling, or mountainous Field
TOTACC no. of crashes occurring at intersectionor | 0, 1, ... HSIS
within £250 feet of intersection on major
road during 1993-95
fatal, injury, no. of fatal, injury, property damage only 0,1, .. HSIS
Crash data propdam crashes, respectively
‘ head-on, no. of head-on, sideswipe, rear end, 0,1, .. HSIS
1993-1995 sideswipe, rear | broadside, hit object, overturned,
end, broadside, | pedestrian, or other crashes, respectively
hit object,
overturned,
pedestrian,
other
MISCACT1 movement of vehicle in crash prior to crash HSIS
(left turn, etc.)

1 mph = 1.61 km/h, 1 ft =0.305 m
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During the counts, the number of passenger vehicles and the number of trucks entering and leaving
the intersection were recorded, along with the incoming and outgoing legs. The beginning and
ending times of the counts were also recorded. A typical duration was 45 minutes. When the data
were processed later at Pragmatics, Inc., all counts were converted to hourly counts. Intersection
legs were identified by leg numbers, in the clockwise order 1, 3, 2, 4 shown in Figure 1. Legs
numbered ] and 2 are on the major road; from leg 1 to leg 2 is the increasing milepost direction.
Legs 3 and/or 4 are on the minor road, with leg 3 to the left of the major road’s increasing direction.
For traffic going from leg number i to leg number j, the morning counts were M_PCij and M_TRij
in vehicles per hour, while the evening counts were E_PCij and E_TRij. The distinction between
passenger vehicles and commercial vehicles/trucks was based on the number of tires. A commercial
vehicle was taken to be any vehicle with more than four tires, and included cars with trailers. This

almost always meant a vehicle with more than two axles.

Major Road
Leg 2
. Increasing
- milepost
direction
ANGLET . ANGLE2
Leg 3 ' fez s
Leg !
Major Road

FIGURE 1. Intersection Diagram Showing Leg Numbers

Roadside Variables

During the field work, the roadside variables Number of Driveways and Roadside Hazard Rating
{(HAZRAT) were callected by inspection.

The number of driveways within 250 feet (76 meters) of the intersection center was counted along
the major road. Residential and commercial driveways were counted separately. A gas station with
two entranceways would be counted as having two commercial driveways. For signalized
intersections, the number of driveways was also counted on the minor road out to 250 feet (76
meters).



HAZRAT is a variable devised by Zegeer et al. (1987)* that is an amalgam of sideslope, clear zone,
and distance to nearest hard object. [t takes whole number values from 1 to 7, with 7 being the most
hazardous. Field workers were provided with images of typical roadsides with different ratings, and
at site visits, they made estimates of the average rating of the major road within 250 feet {76 meters)
of the intersection center.

At each intersection, field workers recorded left- and right-turning lanes on all approaches, median
widths and characteristics, and intersection angles. At a three-legged tntersection, the number of left-
turn lanes on the major road, or right-turn lanes, is always 0 or 1, and likewise on the minor road.
At a four-legged intersection, signalized or not, the number of left-turn lanes on each road, or right-
turn lanes, is 0, 1, or 2. The measured intersection angles, ANGLEI and ANGLEZ, are between legs
2 and 3 and between legs 2 and 4, respectively. See Figure 1. In California, intersections are
squared up by policy, i.e., although the basic angle between the major and minor roads may be
substantially different from 90 degrees, the minor road will curve sharply within a few car lengths
of the intersection to create a right angle. Field workers were instructed 1o record the large-scale
angle of the approach when very sharp curves of this type were present.

Sight Distances

Sight distances were estimated longitudinally on the major road and left and right on each minor leg,
At three-legged intersections, the longitudinal sight distance was only measured in one direction,
e.g., il the third leg was leg 3 in Figure 1, then the sight distance from leg 1 to leg 2 was measured,
but not from leg 2 to leg 1. Likewise, at signalized intersections, left sight distances were not
measured. For the signalized intersections, longitudinal and left sight distances were estimated on
all legs. When a protected left turn exists from leg 1 to leg 3, one may argue that longitudinal sight
distance from leg 1 to leg 2 is unimportant.

The Green Book (1994, p. 702) recommends that left and right intersection sight distances from the
minor road be measured at 6 meters (20 feet) from the edge of the traveled way. At many
mtersections, this yields very little sight distance, and only a foclhardy driver would decide to enter
the intersection from this location. An alternative standard is 3 meters (10 feet) from the edge of the
traveled way, approximately the location of a seated driver prior to entering the intersection. The
latter standard has apparently been adopted by many States, and is the one that was used in
measurements here. For longitudinal sight distance (along the major road from one lane to the
opposing lane), measurements were made from the edge of the traveled way of the minor road in the
leftmost incoming lane of the major road. The driver’s eye was assumed to be at a height of 1070
millimeters (3.5 feet) and the object viewed was assumed to have a height of 1300 millimeters (4.25

¥ C.V. Zegeer, J. Hummer, D. Reinfuhrt, L. Herf, and W. Hunter, Safery Cost-
Effectiveness of Incremental Changes in Cross-Section Design — Information Guide, Report No.
FHWA-RD-87-094, Federal Highway Administration, Washington, D.C., 1987.
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feet). See the Green Book, pp. 136-7.

Jiaht dretanree 1T thoy wora eniffie record the
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distance. If they were many hundreds of feet long, they were estimated with a range finder. The
latter is an optical device with two light paths from the distant object to the eyepiece. Then a dial
1s turned until the two images of the object merge, and a distance can be read from the dial.

Horizontal Alignment

Horizontal curves were recorded for the major road and, in the case of signalized intersections, for
the minor road. A segment from 800 feet (244 meters) before the intersection to 800 feet after the
intersection was determined, and any horizontal curve that overlapped this segment was included.
For each such horizontal curve, the beginning and end points were noted, along with the direction
of curvature and the degree of curve. Measuring wheels and chalk were used to detenmine beginning
points and endpoints. Degree of curve was measured by marking off a straight line distance,
typically 100 feet (30.5 meters), between two points at the edge of the traveled way, and calculating
the perpendicular distance at the midpoint to the edge of the traveled way. The degree of curve, in
degrees per 100 feet (30.5 meters), is then calculated from the formula:

18000 x 8 x H
T ox (4H? + L%

DEGH =

where L is the length of the straight line in feet and A is the perpendicular distance in fect, (The
metric equivalent 1s DEGH,, = DEG/0.305 in degrees per 100 meters.) No adjustment was made for
the roadway width. Even on a four-lane road, an adjustment that replaces the edge of the traveled
way by the centerline of the road would typically change the value by no more than a few percent.

Vertical Alignment

As with horizontal curves, vertical curves were recorded that overlapped a segment out to + 800 feet
{244 meters) from the intersection center along the major road and, for signalized intersections,
along the minor road. Beginning points and endpoinis of each vertical curve were determined with
measuring wheels and chalk. Then, incoming and¢ outgoing grades were estimated at the beginning
and end of each curve. Grades were considered positive if they were uphill in the direction from leg
1 to leg 2, the increasing direction of the major road, or from leg 3 to leg 4 along the minor road.
For any intersection that had no vertical curves, a unique grade, GRADE]1, was reported.

Grades were measured in one of two ways. An optical level and a measuring rod were sometimes
used. A distance of 25 feet (7.6 meters) or so would be paced off along the edge of the traveled way.
A marked height at that distance would be compared with the corresponding height on a measuring
rod determined by sighting the optical level horizontally. The difference in height divided by the
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horizontal distance yields the slope. An alternative method was to place a 4-foot (1.2-meter) level
along the roadway (or along a flat board on the roadway) and record the slope directly from a

display.
Other Variables

Posted advisory and regulatory speeds were recorded for each leg when seen within a few thousand
feet, existence of lighting at the intersection was noted, and a qualitutive measure of terrain ({iai,
rolling, or mountainous) was also noted. At signalized intersections, it was noted whether the signal
appeared to be pre-timed, actuated, or semi-actuated. Protected left turns on the major road were
also noted, but no record was made of which pairs of legs had such protection. A reasonable
assumnption is that the left-turn movement from the major road leg with the highest volume, either
leg 1 to leg 3 or leg 2 to leg 4, had such protection when PROT LT equals 1 and no left turns were
protected when PROT_LT equals 0.

DATA LIMITATIONS
HSIS Data
The HSIS variables are ADT and crash data for the years 1993, 1994, and 1995.

California ADT data are determined systematically and regularly on State roads through 400
permanent continuous operation count stations and another 1,700 permanent stations that are usec
once every 3 years. Intersection major road ADT is based on the segment ADT. Minor road ADT
is generally estimated rather than counted, is done by the Districts, and is thought to be older and
of lesser quality. Michigan has about 120 permanent count stations, not all on State roads, and
attempts to do counts on each State road once every 3 years. It does not have ADT for minor roads
unless they are State roads.

Crash data for both States are subject to the limitations noted in the study of Hakkert and Hauer
(1988). Many Michigan property damage only crashes, and some injury crashes, are reported by the
driver without an officer at the scene. Not only are there issues of underreporting and classification
for both States, but there is also the question of crash location. Some Michigan observers think that
crash locations are often incorrect, and mention examples where a crash was attributed not just to
the wrong milepost, but to the wrong intersection.

Field Data

The traffic data collected in the field during this study have obvious limitations. They were collected
on a single weekday in a particular season of the year and during a short time period in nominal peak
morning and evening hours. Field workers reported that in different locations, the traffic volumes
might be especially high early or late in the morning or evening, depending on such factors as the
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presence of a manufacturing plant versus a shopping center nearby. The true definition of peak hour
varies from location to location, while this study had to follow visitation umetables based on
available resources. In California, some rural intersections had relatively low traffic, reflecting likely
seasonal variations at resorts and camping areas such as Lake Tahoe. The site visits were conducted
in late fall and early spring at some of these locations. No attempt was made to adjust the data to
take into account such variability. Yet another limitation is that these data were collected 1n 1997
for use in modeling 1993-1995 events.

Variables such as HAZRAT, number of driveways, channelization, angle, speed limits, sight
distances, and horizontal and vertical alignments were aiso measured in 1997 and are presumed to
be vahid for the earlier time period. These items, however, tend to be much more stable than traftic
movements, and temporal variation is not thought to be a significant source of error.

HAZRAT is a subjective rating of roadside hazards. The measure is supposed to average the hazards
alongside the major road within 250 feet (76 meters) of the intersection.  Typically, two
experienced observers will agree on a value or differ by 1, e.¢., one observer may assign 2 3 and the
other a 2.

Sight distances, as noted, were measured with a measuring wheel or a range finder. Because of the
limitations of the range finder and some subjectivity about when an object becomes visible {seeing
something versus recognizing what it is), sight distances are likely to be accurate to within roughly
10%. For the purposes of this study, sight distances in excess of 1800 feet (550 meters) or more
were not distinguished, and any sight distance thought to be m excess of 2000 feet (610 meters) was
generally marked as 2000 feet. A sight distance of 1600 feet (488 meters) would be noticcably
smaller, and absolute accuracy would improve as sight distances decrease.

Horizontal and vertical curves present unique difficulties. For many rural roads, the line of a
highway is quite irregular when examined on a small scale. Pothcles, bumps, and other small
irregularities due to the tay of the land or due to wear caused by traffic and weather are often present.
Field workers were asked to idealize roadways by smoothing road lines out to scales of several
vehicle lengths. Decisions about where a curve begins and ends are thus to seme extent arbitrary,
particularly for curves of large radius or small grade. Beginning points and endpoints as judged by
two different observers might differ by as much as 20 feet (6 meters), while degree of curve might
vary by 5% or more. Michigan was relatively flat, with many grades Izss tharn 1%. Vertical grades
of less than 1% were probably measured to no greater accuracy than £0.25%, so that a grade listed
as 0.5% might be 0.25% or 0.75%. A much larger grade, say 5%, would be accurate to within
+0.5%. Differences in successive grades accompanying a vertical curve would have about the same
accuracy since the observers would be sensitive to the change of grade.

Perhaps the greatest limitation of the data is that they do not reflect the special circumstances of each
intersection. When individuals are classified by such conventional (and imperfect) measures as age,
height, weight, sex, IQ, race, etc., sometimes the most important and most relevant points are
missed. Site visits reveal that the intersections in this study are quite diverse, with very individual
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personalities.  Significant items that would not appear in a data base are guite common, e.¢., a
nearby amusement park, beach turn-offs along Lake Huron, canyon roads off of Pacific coastal
tiohwavs sideroads inte California deserts, resort areas such as Lake Tahoe and Squaw Valley,

nignways, Sidercads Mmio Cdiliorild dosclis , FESOrt arcas sueh
small towns where a two-lane road flares out to four lanes for a few thousand feet or where a two-
lane road abruptly arrives at a single signalized intersection, or rural intersections along heavily

trafficked commuter highways connecting big cities to rural homesites.

Signalized rural intersections, in particular, are in transition. The signal is often in place because of
increasing local development and increased minor road traffic. With increasing traffic come more
businesses and residences, and soon a very rural area becomes a small town and a small town

becomes a city.

Analysis and modeling are bound to be inexact because the population under study is a moving
target, and qualitative changes can overtake the quantitative ones, bringing unforeseen variables into

prominence.




4, ANALYSIS

The analysis consists of developing a variety of new variables derived from the variables collected,
determining the statistics for new and old variables singly and jointly, determining correlations
between variables (especially between crash counts and other variables), and studying the chief
relationships found.

Of particular interest is the relationship between crash counts and traffic. Without question, average
daily traffic (ADT) on all approaches is a significant (and usually the most significant) predictor of
crashes. Not only does greater traffic imply greater numbers of crash-prone drivers, even with the
percentage of crash-prone drivers assumed to be independent of traffic or increasing with traffic, but
for multiple-vehicle crashes at intersections, an adequate ameunt of traffic is a necessary condition

for a crash.

Successive sections of this chapter treat new variables, univariate statistics, bivariate statistics and
correlations, and the relationship between crash counts and traffic.

NEW VARIABLES

The chief classes of variables in this study are: crash variables, traffic varizbles, intersection
geometric variables, roadside variables, alignment variables, and sight distances. The intersection
geometric variables concern medians, channelization, and intersection angle. Alignment variables
and sight distance variables, which pertain to the roadway as far out as 800 feet (244 meters) to
several thousand feet from the intersection center, are treated separately.

Crash Variables

The chief crash variable is TOTACC. This is the total number of crashes occurring at the
intersection in the years 1993, 1994, and 1995. Any crash occurring at the intersection or within 250
feet (76 meters) of the intersection center along the major road is included in this number. Crashes
occurring along the minor road near the intersection are recorded as being at the intersection (if
within 100 feet (30.5 meters) of the intersection center in Michigan, if within 250 feet (70 meters)
in California). One exception to this is when the minor road 15 a State road (the major road is always
a State road). This happens for some signalized interscctions. In suck cases, Accident files for the
minor road were also consulted and all crashes within 250 feet {76 meters) of the Intersection center
along the minor State road were included.

A second crash variable is TOTACCI. For this variable, criteria proposed by Bellomo-McGee, Inc.
(BMI) were used to restrict the crashes to ones considered intersection-related. Michigan’s HSIS
Accident file has a variable called Highway Area Type that indicates whether a crash occurred in the
vicinity of an intersection. This perhaps could have been used to establish intersection-refatedness.
However, California has no similar variable. Indeed, an important modeling issue is to establish
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criteria for intersection-related crashes that are uniform from State to State. A set of eriteria with
this aim were prepared by Warren Hughes and A.J. Nedzesky of BMI, with the assistance of Forrest
Council, and were submitted to FHWA in a memo dated March 26, 1998. The BMI criteria are the
following: (1) crashes must occur within 250 feet (76 meters) of the intersection center and (2) they
must be (a) vehicle-pedestrian crashes; (b) crashes in which one vehicle involved in the crash is
making a left turn, right turn, or U-turn prior to the crash; or (c) multiple-vehicle crashes in which
the accident type is cither sideswipe, rear end, or broadside/angle.

Applying these criteria in California and Michigan was not completely straightforward. Minor road
crashes could sometimes only be obtained out to a lesser distance, as noted above, because of the
recording methods of the States. The California data base is silent on whether crashes, including
tumning crashes, may or may not involve driveways, while Michigan has separate categories for some
crashes involving driveways (e.g., “angle driveway”). For accident type, California uses the term
“hroadside,” while Michigan uses the terms “angle straight” and “angle turn.” California does not
distinguish between “sideswipe same” and “sideswipe opposite,” whereas Michigan does. The
precise criteria used in the two States, apart from location as specified in TOTACC, were:

CALIFORNIA

Some vehicle in the crash had MISCACT!I {(Motion preceding collision) equal to “making
right turn,” “making feft turn,” or “making U turn’’;

or
ACCTYPE (Type of collision) was “Auto-pedestrian”;

or
VEH_INVOL (Motor vehicles invoived with) was “Pedestrian™;

or
VEH_INVOL. was “Other motor vehicle” or “Motor vehicle on other roadway,” and ACCTYPE
was “Sideswipe” or “Rear end” or “Broadside.”

MICHIGAN

ANALYS (Accident analysis) was “Motor vehicle/motor vehicle,” and ACCTYPE (Accident
type) was “Head-on” or “Sideswipe opposite,” and MISCACTT (Driver intent) for some vehicle
in the crash was “Make right turn,” “Make left turn,” or “Make U turn™;

or
ANALYS was “Auto-pedestrian”;

or

ANALYS was “Motor vehicle/motor vehicle,” and ACCTYPE was “Angle straight,”
“Rear end,” “Angle turn,” “Sideswipe same,” “Rear end left turn,” “Rear end right tum,”

“Head-on left turn,” “Dual left turn,” or “Dual right turm.”

From these comparisons, it is evident that the problem of uniformity among States also arises when
multiple data fields are used to ascertain whether an crash is intersection-related. The data ficlds
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and associated definitions do not always match up precisely.

Yet another problem is that the BMI criteria were developed for use with two-lane rural roads. The
present study, in part, concerns four-lane rural roads and it is not clear that the same criteria should
be used for them. Observers have also raised the issue of whether different criteria should be used
for signalized versus non-signalized intersections of two- lane rural rcads.

Four other crash variables were developed for this study. Their definitions are given below:

'NJACC = Aall accidents with fatalities, injuries, or possible injuries counted in TOTACC
INJACCI = All accidents with fatalities, injuries, or possible injuries counted in TOTACC
TOTACCS = All single-vehicle accidents counted in TOTACC

TOTACCM = All multiple -vehicle accidents counted in TOTACC

The first two variables, INJACC and INJACCI, exclude crashes in which only property damaue
occurred, but include all others. In California, one of the severity categories s “Complaint of pain.”
In the time period 1993 through 1995, the reporting threshold for property damage only crashes was
$400 in Michigan and $500 in California. The last two variables, TOTACCS and TOTACCM, were
determined for the signalized intersections only, and were used in some of the modeling to relate
crashes to traffic flows by leg.

ADT Variables

Two average daily traffic variables were used in this study - ADT1 and ADTZ. ADTI is estimated

average daily two-way traffic on the major road measured in vehicles per day (vpd) in the vicinity
of the intersection for the 3 years 1993, 1994, and 1995. ADT? is the estimated average daily two-

way traffic for the minor road in this period.

For California, ADT1 and ADT2 were obtained by taking annual figures provided in the HSIS

intersection files, summing them, and dividing by three.

For Michigan, ADT data were not available in the HSIS intersection file. However, ADT data were
available in the HSIS Roadlog file for State roads in the years 1992, 1994, and 1995. The values of
ADT for these years werc interpolated to obtain a value for the year 1993, and the values for 1993,
1994, and 1995 were averaged. These estimated ADT values were for segments of roads. Then,
ADT on segments of the major road adjacent to intersections in the study were averaged to yleld
ADT]I. In some cases (about 20% of the Michigan intersections), the minor road was also a State
road, and ADT2 could be obtained in the same way. In all other cases, ADT2 was estimated on the
basis of morning and evening traffic counts done by Pragmatics, Inc. (see below). An average

morning-hour traffic count (incoming plus outgoing) was determined for each leg, converied into
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a fraction of all incoming and outgoing traffic; the same was done for evening traffic, and the two
fractions were averaged. Then this fraction was applied to the known estimated ADT on the two
legs of the major road to obtain an estimated ADT for each minor leg. ADT2 was this value if there
was only one minor leg, and it was the average of the values for the two minor legs otherwise. This
method has two evident defects; it only represents peak-hour ADT, anc a sample of such at that, and
1t was done in the year 1997 rather than the study years. Nonetheless, it probably has the correct
order of magnitude and may well be as reliable as other minor road ADT estimates in the HSIS files.

In the case of the signalized intersections, the decision about which of two two-lane roads at a four-
legged intersection is major and which is minor was based on ADT. The one with the higher ADT
is defined to be the major road, and the other the minor road. In general, the major road is the State
road, but in Michigan, sometimes both roads are State roads and thus the ADT criterion is used to
declare one of them to be the major road. There are three cases, two in Michigan and one in
California, where the State road has a lower ADT than the other road, a county or iocal road. In
these three cases, the other road is taken to be the major road, its ADT is ADTI, and its legs are

taken to be legs 1 and 2.
Variables Derived From Traffic Counts
Traffic count data were converted into hourly form so that for each ordered pair of approaches (1,)),

an estimated number of vehicles per hour was given traveling from leg 1 to leg j. This was calculated
for passenger vehicles and trucks separately and for a morning and evening hour separately.

M_PCij = RAWMPCY
M_HR

M TRy = RAWMTRIj
M_HR

£ PCij - RAWEPCij
E_HR

E TRij = RAWETRIf
E _HR

A rather large variety of variables can be derived from such quantities. For the present study,
selected variables shown below were developed.

Commercial or fruck percentage was measured by three variables, AM%TRUCK, PM%TRUCK,

and PK%TRUCK, representing the morming, evening, and combined morning and evening
percentages of truck traffic passing through the intersection. These are defined as follows:
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Zat;{ pairs fijj M‘*TRU
AM%BTRUCK = } ' % 1060

EGH pairs (i} (M——TRU * M_PCU)

Eat‘! airs (1§} E—TRU
PMY%TRUCK = P &) x 100

5 (E_TRij + E_PCij)

all pairs (i}

(M _TRij + E_TRi)
PK%TRUCK = 2 pairs (1) x 100

(M_TRij + M_PCiyj + E_TRij + E_PCij}

Ldgll pairs {ij) VT —

The sums are over all ordered pairs of legs (i,j), i # j. Notice that PK%TRUCK 1s not necessarily
the average of the other two variables. It is rather a weighted combination of the two, weighted by
the fractions of the overall traffic in moming and evening, respectively.

Turning percentages were calculated along the major road, the minor road, and combined by
methods similar to the above. Define the auxiliary variables Mij and Eij by:

Mij = M_PCij + M_TRij

Eij

E_PCij + E_TRij

summing passenger and commercial vehicle flows to get total vehicie flows. Then, the variables
PK%TURN, PK%LEFT, PK%THRU1, PK%LEFT1, PK%THRU2, PK%LEFT2 are given by:

Laati pairs (i L2 ), and (4,3 WY T EL)
v ¢ ).03.4). )
PEY%TURN = all pairs (15} except (1.2).(2,1).(3.4). and {4,3) % 100
Zall pairs (ijj (Mlj N EU)
E . . Mo+ Ei
PEYLEFT = (ig) =(1,30(4.1).(2,4), or (3.4} x 100

Zaﬂ pairs (1j} (MU * EU)
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PEK%THRUI

PKWLEFTI

PK%THRU2

PKY%LEFT2

In case the intersection is three-legged, traffic flows to and from one of legs 3 and 4 will always be
zero and, in particular, PK%THRU2 is zero. Three more variables that might be considered are:

- (Mij + E4)
z(‘u’) (1,2) or (2.1} % 100

(Mij + Eij)

Eat‘i’ pairs (ij) with 1=l or 2

er.,u 1.3 or 2. M ED) . 100

(M + Eij)

Zal:’ pairs (ij} with i=1 or 2

h (M- . + E - v)
. i i
_ Lwippaer iy Y J < 100
Zall pairs (1jf with i=3 or 4 (iMU N EU)
_ 2y tosy o 5 MG T ED 100

Zall pairs (Lj} with 1=3 or 4 (JJU " EU)

PK%RIGHT = (PK%TURN — PK%THRU)

PK%RIGHTI = (100 - PK%LEFTI - PK%THRUI)

PK%RIGHT2 = (100 - PK%LEFT2 - PK%THRUZ)

In connection with the modeling of the signalized intersections, variables were developed to estimate
the incoming traffic on each leg. These variables were based on the ADT information and the peak-

hour traffic flows. They are:

> s ML+ EL) . ADTI

F =

Yo, Q. (M v i+ Mji + Efiy) 1000

D s M2) + E2]) . ADTI

F -

PoanQ,,, Q. (M ¢ Eij + Mji + Ejiy)y 1000

Ej.—.j,g,.; (M3j + E3j) y ADT2

F.o=
3 y i 2y L] .
1203, (Ej,ﬂ, (Mij + Eij + Mji + Ejiyy) 1000

Dt M+ E4) L ADT2

F b
o, Q. My By o+ Mji o+ Eji)) 1000
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where the units are thousands of vehicles per day and F, 1s the estimated number of thousands of
vehicles per day entering the intersection along leg number i (cf. Figure 1). Three other variables
derived from the F,’s were also considered:

PRODFADJ = F)F, + FF, + F.F, + FF,
PRODFOPP = F/F, + F/F,

SUMF = F, + F, +F, + F

d

The first variable PRODFADIJ is a variable representing the interaction of adjacent legs, the second
PRODFOPP does the same for opposite legs, and the third SUMF is the sum of all the flows.

Intersection Angle Variables

An angle variable DEV | representing the average deviation from 90°, is defined by:
langlel - 90| if intersection is three-legged with third leg lefi (leg 3)

DEV - langle? ~ 90| if intersection is three-legged with third leg right (leg 4)

langlel - 90| *jangle? - 90| if intersection is jour-legged

angle2 - 90 If the third leg is to the right (leg 4)
at a three-legged intersection

90 - anglel if the third leg is to the left (leg 3)
at a three-legged intersection

angle? - anglel

2

HAU =

at a four-legged interseciion

The variable HAU is a signed variable. See Figures 2 and 3. For a three-legged intersection with
the angle to the right of the increasing direction, HAU is positive when the angle 1s larger than 90°,
as in 2(a), and HAU is negative when the angle is smaller than 90°, as in 2(b). If the angle is to the
left of the increasing direction (see Figure 3), 180° minus the angle becomes the new angle and
HAU is defined as ((180 - angle) - 90) = (90 - angle), as above. For a four-legged intersection, as
in 2(c), it is the average of the two three-legged values (and thus 90° cancels out). Figure 4
illustrates the calculation of HAU in a variety of cases. Kulmala (1995) proposes that turns from the
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Leg 2

Leg 2
. anglel
In_crea{rmg Increasing L
Direction Direction srop
S Leg 4
A A S &

Leg ! Legl

(b) Three-legged intersection,

(a) Three-legged intersection,
angle smaller than 90°

angle larger than 90°

Increasing
Direction

Leg 1

(¢) Four-legged intersection

FIGURE 2. Intersection Angle Geometries
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For Three-Legged Intersections!
Miner road to right of major read In direction of increasing mileposts:

f

g0°

angle2 - 20
g¢ - 90
Q

HAU

ooy

g0°
HAU = 30 - anglet HAU = 80 - angle1
=90 - 80 =90 - 80
=140 =0
For Four-Legged Intersections:
90° 90°

(minor road not straight)

HAU = (angle2 - angle1) /2
= {90 -90)/2

HAU
4]

i

angle? - anglel)/ 2
11C - 80}/ 2

(
(
15

HAU = anglieZ? - 90
=60 -80
= -30
115°
HAU = 90 - anglel
=80 - t15
= -25
HAU = {angle? - angie1)/2
= (60 - 120) /2
= -30

FIGURE 3. Examples of Calculation of the Angle Variable HAU
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far lane of the major road may be less crash prone in situation 2(a) than in situation 2(b), so that
positive values of HAU correspond to fewer crashes.

Sight Distances
To represent sight distances for the modeling, reciprocals were chosen. Large values of the

reciprocals corresponded to poor sight distances, and small ones comresponded to lengthy sight
distances, and thus crashes might be expected to increase with increasing values of the reciprocals.

if intersection is three-legged with minor leg heing leg 3
SD1

RSDI = 8—13 if intersection is three-legged with minor leg being leg 4
D

) if intersection has four legs;

- +
2 8DI SD2

if intersection is three-legged with minor leg being leg 3

SDL3
N A 1 i fut i 3 ih -/ d h ] l b ]
RSDL2 = if intersection is three-legged with minor leg being leg 4
SDi4
i 1 1 L R
(—X + Y if intersection has four legs;

2 SDL3 SDL4

1
if intersection is three—legged with minor leg being leg 3
SDR3 £8 g g
1
RSDR2 = L if intersection is three-legged with minor leg being leg 4
SDR4
1 I 1 s .
{(—) + Y} if intersection has four legs;
2 SDR3 SDR4
1 i o .
RSDLI = (=X + Y if intersection has four legs;
2 SDLI SDL2
1
R8D2 =

2"V sp3  SD4

The variables are RSD1, RSDIL.2, RSDR2, RSDL 1, and RSD2.
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Horizontal Alignment

Variables used to represent composiie horizontal curvature are the same as those used by Vogt and
Bared (1998), except that 764 feet (233 meters) has been replaced by 800 feet (244 meters):

Y DEGHi
Hi~-1 =
Number of horizontal curves overlapping intersection center £250 feet
5" DEGH])
HEI-1 = !

Number of horizontal curves overlapping intersection center =800 feet

where the sum is over the corresponding curves along the major road. HI-1 and HEI-1 (E for
extended) are the unweighted averages of the degrees of curvature of the corresponding curves,
Similar quantities for the minor road, in the case of signalized intersections, are denoted by HI-2 and
HEI-2. These are combined with the major road variables to generate two more variables HICOM
and HEICOM:

HICOM = (SyHI-1 + HI-2)
2

HEICOM = (%)(HEIl + HEI-2)

to be used in the modeling of the signalized intersections.
Vertical Alignment
Vertical alignment variables likewise are taken from Vogt and Bared (1998).

A basic variable associated with each vertical curve 1s Vi

GBI — GEI
lemgth Li of i-th vertical curve in hundreds of feet

with units of percent per 100 feet (30.5 meters), where the numerator is the absolute change of grade
Agi = |GBi - GEi] and L1 = (VEi - VB1)/100.
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FIGURE 4. Vertical Curve

Four vertical variables VCI-1, VCEI-1, VI-1, and VEI-1 were considered:

. v

yer-1 = -
Number of vertical crest curves overlapping intersection center £250 feer
Y v
VCEI-1 =
Number of vertical crest curves overlapping intersection center 800 feet
g
LVt
vi-1 = i
Number of vertical curves overlapping intersection center £250 feet
Vi
VEI-1 =

Number of vertical curves overlapping intersection center £800 feet

These sums are over the stipulated vertical curves along the major road. For signalized intersections,

alon sl acrad

Tt ' LN T F P of T S P TR A the minaT
similar variables with the suffix 2 rather than 1 were also employed for the minor r

the combined variables VCICOM, VCEICOM, VICOM, and VEICOM:

e}
0

VEICOM = (L)VEI-1 - VEI-2)
2

Recall that crest curves are vertical curves for which the grade decreases (positive o negative,
positive to less positive, negative to more negative}.
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Another variable developed pertaining to vertical alignment is ABSGRD1. [f'only one grade was
seen on the major road, ABSGRD1 was the absolute value of this grade. If more than one grade was
seen in the vicinity of the intersection on the major road, absolute values were computed of all grades
seen at the beginnings and endings of those vertical curves that overlapped the segment of the major
road within +800 feet (244 meters) of the intersection center. These absolute values were then
averaged (e.g., if six grades occur corresponding to three vertical curves, their absolute values were
summed and divided by six), without regard to where they occurred (in some cases more than 800
feet (244 meters) from the intersection) or the distance for which the grade remained constact. A

similar variable ABSGRD2 was alsc developed for the minor road of signalized intersections.

Miscellaneous Variables

Driveway variables were combined to yield NODRWYT as follows:

NODRWYI = NODRWYRI + NODRWYCI

and a similar combination, NODRWY2, was used for minor road driveways at signalized
Intersections.

Median widths varied between legs of the major road in 18 out of 84 three-legged intersections, 18
out of 72 four-legged intersections, and 1 out of 49 signalized intersections (most of the signalized
intersections had no median). Thus, the median width variable here, MEDWIDTHI, is the average
of the median widths of the two legs, leg 1 and leg 2, of the major road.

Speed Hmit variables, SPD1 and SPD2, with values in miles per hour were assigned to the major and
minor road. On the major road, SPD1 was the average of the posted speeds on Legs 1 and 2 or the
unique value seen if a posted speed was seen on only one of these legs. The same rule was applied
for the minor road to get SPD2. In some cases, no posted speed limit was seen on the leg or legs of
the minor road. In this case, SPD2 was assigned the default value 35.

During the modeling, it became convenient to introduce the channelization variable LTLNI1S:

1 if LTLNT is 1 or 2
LTLNIS =
0 i LTLNI is O

Vet another numerical variable was devised to denote the State:
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0 If the intersection is in California
STATE =
1 if the intersection is in Michigan

The STATE variable can be used to study whether crash experience at the various intersections is
due in part to differences between the States. Such factors as driver behavior and/or crash reporting
practices may be significantly different “etween the two States.

UNIVARIATE STATISTICS

A summary of the data obtained is shown in Tables 5, 6, and 7. The first item that strikes the eye
is that the mean number of crashes per intersection, no matter how they are measured, 1s highest at
signalized intersections, moderate at four-legged ones, and lowest at three-legged ones.

There are a number of other ways in which the intersection classes differ. The signalized
intersections have much higher minor road ADT and much higher turning percentages than the other
two classes. The signalized intersections tend to have more turning lanes on both major and minor
legs, and lower speed limits on the major road as well as higher ones on the minor road. There is
more lighting on the signalized intersection, a moderate amount on the four-legged intersection, and
the least on the three-legged intersection. Likewise, the general terrain is {lattest on the signalized
intersection, less so on the four-legged intersection, and least on the three-legged intersection. This
is due at least in part to the fact that two-thirds of the signalized intersections are in Michigan, while
only 25% of the other intersections are, and Michigan is a relatively flat State. The three intersection
classes are similar in other ways. Peak Truck Percentages at the three classes of intersections are
from 9 to 11% on average. There are two or three driveways per intersection on average, and the
average value of HAZRAT is from 2.2 to 2.5. Sight distances are comparable, except that signalized
intersections have a lower average sight distance left on the minor road. The signalized intersections
have even lower sight distances left on the major road than on the minor road. This suggests that
woods, buildings, and other obstacles are not cleared away from the minor road to the extent that
they are from the major road.

Horizontal and vertical alignments are generally similar. Fewer of the signalized intersections,
primarily in Michigan as mentioned, have horizontal curves and fewer have vertical curves.
Although the average value of HEI-1 varies substantially among the intersection classes, this average
is strongly influenced by a few intersections with sharp tums. The average grade of signalized
intersections is a bit lower than the average for the nonsignalized intersections, and the minor road
has a higher average grade than the major road. This phenomenon was also noted in the three-legged
and four-legged intersections, although no measurements were made. Frequently, the minor legs
leading to an intersection on a four-lane road have fairly steep grades as they are brought up or down
to conform with the level of the major road.
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TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections

Major voad four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max. Median Mean Freq. YeZero
Mo, of Crashos TOTACC 0 o] 2 388 | 326 | 214 |

No. of Injury Crashes INJACC 0 11 i 1.61 220(67.5%) 1 38.1

No. of Intersection-Type Crashes TOTACCI 0 13 1 2.62 135 (41.4%) 34.5

No. of Intersection-Type Injury Crashes INJACCI 0 9 1 1.21 102 (31.3%) 48.8

Average Daily Traffic on Major Road ADTL, vpd 2,367 33,058 12,050 12,870

Average Daily Traffic on Minor Road ADT2, vpd 15 3,001 349 596

Peak Truck Percentage PK%TRUCK 1.18 28.16 7.79 9.15

Peak Turning Percentage PK%TURN 0.26 53.09 428 6.68

Peak Left-Turn Percentage PK%ILEFT .13 25.97 2.16 3.29

Peak Through Percentage on Major Road PK%THRUI 03.26 100.00 97.98 96.44

Peak Left-Turn Percentage on Major Road PK%LEFT1 0.00 21.29 0.69 1.49 13.1

Peak Left-Tum Percentage on Minor Leg PK%LEFT2 0.00 100.00 60.99 56.64 7.1
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TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections (continued)
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation Mean Freq. \ % Zero
Roadside Hazard Rating HAZRAT 1 7 2 2.52
! 16 (19.0%)
2 37 (44.0%)
3 13 (15.5%)
4 10 (11.9%)
5 6 (7.1%)
IS 1 /1 200
u 1 KI e /0}
7 1(1.2%)
No. of Res. Driveways on Major Road NODRWYR1 0 7 0 1.17 98 56.0
No. of Commnt. Driveways on Major Road NODRWYC1 0 14 0 1.93 162 57.1
No. of Driveways on Major Road NODRWY1 0 15 1 3.10 259 42.9
Left-Turn Lane on Major Road LTLN} 0 1 ] 0.54 46 4
0=no 39 (46.4%)
1 =yes 45 (53.6%)
Right-Turn Lane on Major Road RTIL.NI 0 ] 0 0.19 81.0
0=no 68 (81.0%)
1= yes 16 (19.0%)
Left-Turn Lane on Minor Road LTLN2 0 1 0 3.57 96.4
0=no 81 (96.4%)
1 =yes 3 (3.6%)
Right-Turn Lane on Minor Road RTLNZ 0 1 0 11.90 881
0=no 74 (88.1%)
1 = yes 10 (11.9%)
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TABLE 5. Summary Statistics: 84 Three-Legged Rural Intersections (continued)
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation ‘—L Min. Max. Median Mean Freq. Yolero
ot o Widih on Major Road MEDWIDTHL, feet | 0 | 36 0 3.74 53.6
Median Type on Major Road MEDTYPE

No Median 45 (53.6%)

Painted 23 (27.4%)

Curbed 9 (10.7%)

Other (Guardrail, Mixed, etc.) 7 (8.3%)

Angle Variable HAU, degrees -45 55 0 -00.36 233
Longitudinal Sight Distance on Major Road SD1, feet 500 2000+ 2000+ 1543+
] eft-Side Sight Distance on Minor Road SDI1.2, feet 45 2000+ 1470 1399+
Right-Side Sight Distance on Minor Road SDR2, feet 80 2000+ 1375 1388+
Degree of Curve HEI-1= (1m)Y, DEGH], deg/100 ft 0 26.6 0 2.47 52.4
Curve Grade Rate VEI-1= (1/m)}, (JAgil/Li), %/100 ft 0 6.71 0.04 0.89 50.0
Crest Grade Rate VCEI-1 = (U/m)Y, (JAgil/Li), %/100 ft 0 11.0 0 0.65 59.5
Average Absolute Grade on Major Road ABSGRD1, % 0 5.85 0.65 1.11 25.0

] ft=0.300m
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TABLE 5, Summary Statistics: 84 Three-Legged Rural Intersections (continued)
Major road four-lane, minor leg stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation

Min.

Max. l Median Mean Freq. Yolero
Speed Limit on Major Road SPD1, mph 30 65 55 50.4
Speed Limit on Minor Road SPD2, mph 15 35 35 31.5
Light at Intersection LIGHT 0=no 52 (61.9%)
1 =yes 32 (38.1%)
Terrain Flat 48 (57.1%)
Rolling 29 (34.5%)
Mountainous 7 (8.3%)
STATE 0=CA 60 (71.4%)
1 =MI 24 (28.6%)

I mph = 1.61 km/h
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max. Median Mean Freq. o, Z.ero
NoofCmbsTOTACC | o 38 35 | ss3 | s | 12
No. of Injury Crashes INJACC 0 20 2 2.64 190 (47.7%) | 25.0
No. of Intersection-Type Crashes TOTACCI 0 27 2 4.13 297 (74.6%) 22.2
No. of Intersection-Type Injury Crashes INJ ACCI 0 19 1 2.19 158 (39.7%) 36.1
Average Daily Traffic on Major Road ADTI, vpd 3,350 73,000 11,166 13,018

Average Daily Traffic on Minor Road ADT?2, vpd 21 2,018 410 559

Peak Truck Percentage PK%TRUCK 1.70 37.24 8.36 10.95

Peak Turning Percentage PK%TURN (.00 48.52 6.56 9.47 28
Peak Left-Turn Percentage PK%LEFT 0.00 25.26 6.56 9,47 2.8
Peak Through Percentage on Major Road PK%THRU] 67.77 100.0 96.51 94.41

Peak Lefl-Tum Percentage on Major Road PR%LEFTI (.00 13.96 1.51 2.78 5.6
pPeak Through Percentage on Minor Road PK%THRU2 0.00 68.1 12.0 16.37 171
Peak Lefl-Turn Percentage on Minor Road PK%LEFTZ2 (.00 100.00 37.5 40,58 5.7
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued)
Major road four-lane, minor legs stop-controlled, California and Michigan, 1993-1995

Variable and Abbreviation i Min. Max. Median Mean l Freq. o/ Z.ero
Roadside Hazard Rating HAZRAT 1 6 2 219 o
1 21 (29.2%)
2 29 (40.3%)
3 12 {16.7%)
4 8 (11.1%)
5 1(1.4%)
6 1(1.4%)
No. of Res, Driveways on Major Road NODRWYRI 0 7 0 1.04 75 66.7
No. of Comm. Driveways on Major Road NODRWYCI 0 12 0 0.88 63 66.7
Number of Driveways on Major Road NODRWY1 0 15 0 1.92 138 542
Left-Turn Lanes on Major Road LTLN1 0 2 ) 1.33 30.6
0 22 (30.6%)
1 4 (5.5%)
2 46 (03.9%)
Right-Turn Lanes on Major Road RTLNI 0 ) 0 0.65 6.5
0 45 (62.5%)
1 7(9.7%)
2 20 (27.8%)
Left-Turn Lanes on Minor Road LTLN2 0 1 0 0.028 97.2
0 70 (97.2%)
1 2(2.8%)
2 0(0.0%)
Right-Turn Lanes on Minot Road RTLN2 0 2 0 0.61 62.5
0 45 (62.5%)
1 10 (13.9%)
2 17 {23.6%)
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TABLE 6. Summary Statistics: 72 Four-Legged Rural Intersections (continued)

Major road four-lane, minaor legs stop-controlled, California and Mich

= 2RI

iean. 1993.1995
555 e

Variable and Abbreviation Min. Max. Median Mean Freq. %Zero
Median Width on Major Road MEDWIDTH], feet 0 36 2 3.78 43.1
Median Type on Major Road MEDTYPE

No Median 31{43.1%)

Painted 17 (23.1%)

Curbed 22 (30.6%)

Other 2 (2.8%)
Angle Variable HAU, degrees -20 30 0 0.868 77.8
Longitudinal Sight Distance on Major Road SD1, feet 400 2000+ 1500 1430+
Lefi-Side Sight Distance on Minor Road SDL2, feet 324 2000+ 1438 1358+
Right-Side Sight Distance on Minor Road SDR2, feet 215 2000+ 1430 1377+
Degree of Curve HEI-1 = (1/n)}). DEGHI, deg/100 ft 0 233.3 0 5.01 56.9
Curve Grade Rate VEI-1 = (1/m}} (|Agil/Li), %/100 ft 0 12.5 0 0.70 61.1
Crest Grade Rate VCEI-1 = (1/m)} (JAgil/Li), %/100 ft 0 12.5 4 (.50 75.0
Average Absolute Grade on Major Road ABSGRDI, % 0 5.8 0.4 (.98 38.9

[ i=0.305m
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ALl F05

L1IRax

Variable and Abbreviation

b ]
il

Major road four-lane, mino

=
&
s

fov]

Min. Max Median \“ Mean Freq. ‘ Y Zero
Speed Limit on Major Road SPD1, mph 53.68 o
Speed Limit on Minor Road SPD2, mph 25 50 35 33335
Light at Intersection LIGHT 0=no 40 (55.6%)
1 =yes 32 (44.4%)
Terrain Flat 19 (68.1%)
Rolling 14 (19.4%)
Mountainous 9(12.5%)
STATE 0=CA 54 (75.0%)
[ =MI 18 (25.0%)
1 mph=1.6]1 km/h
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TABLE 7. Su mmary Statistics: 49 Slgnallzed Rural Intersectmns

nnnnnnnn

Variabie and Abbreviation Median Mean Freq Y% Zero
No. of Crashes TOTACC 2 48 21 20.8 1017 0.0
No. of Injury Crashes INJACC {0 25 7 7.47 366 (36.0%) 4.1
No. of Intersection-Type Crashes TOTACCI 1 37 17 16.1 790 (77.7%) 0.0
No. of Intersection-Type Injury Crashes INJACCI a 21 6 6.14 301 (29.6%) 4.1
Average Daily Traffic on Major Road ADTT, vpd 4917 25,133 8,900 10,491

Average Daily Traffic on Minor Road ADTZ, vpd 940 12,478 3,670 4,367

Peak Truck Percentage PK%TRUCK 2.69 45.43 7.71 8.96

Peak Turning Percentage PK%TURN 7.07 72.66 34.48 35.64

Peak Lefi-Turn Percentage PK%LEF 420 37.07 17.57 18.17

Peak Through Percentage on Major Road PK%THRU1 18.01 96.73 73.77 71.19

Peak [ eft-Turn Percentage on Major Road PK%LEFT1 1.78 36.67 12.99 14.71

Peak Through Percentage on Minor Road PK%THRU2 8.45 §4.09 41.97 43.90 —
Peak Lefi-Turn Percentage on Minor Road PK%LEFT2 2.50 75.73 2488 28.69
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TABLE 7. Summary Statistics: 49 Signalized Rural Intersections (continued)
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max. Median Mean Freq. Yo Zero
"Roadsidc Hazard Rating HAZRAT 1 6 > 5 35

1 10 (20.4%)

2 20 (40.8%)

3 14 (28.6%)

4 3 (6.1%)

3 1 (2.0%)

6 1 (2.0%)
No. of Res. Driveways on Major Road NODRWYR1 0 6 0 0.67 33 71.4
No. of Comm. Driveways on Major Road NODRWYC1 0 11 2 2.35 115 32.7
No. of Driveways on Major Road NODRWY'1 0 15 3 3.02 148 28.6
No. of Res. Driveways on Minor Road NODRWYR2 0 8 0 0.94 46 65.3
No. of Comm. Driveways on Minor Road NODRWYC2 0 11 3 2.24 110 22 4
No. of Driveways on Minor Road NODRWY?2 0 11 3 3.18 156 12.2
Left-Turn Lanes on Major Road LTLNI 0 2 2 1.69 143

0 7 (14.3%)

1 1 (2.0%)

2 41 (83.7%)
Right-Turn Lanes on Major Road RTLN 0 2 ] 0.98 42.9

0 21 (42.9%)

1 8 (16.3%)

2 20 (40.8%)
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TARLE 7. q"mlnnrv Statisties: 49 §i

IARrEing ¥ LR

Variable and Abbreviation Min. Max, Median Mean Freq. YaZero
Left-Turn Lanes on Minor Road LTLN2 0 2 2 1.24 34.7
0 17 (34.7%)
1 3(6.1%)
2 29 (59.2%)
Right-Turn Lanes on Minor Road RTLN2 O 2 0 0.73 53.1
0 26 (53.1%)
| 10(20.4%)
2 13 {26.5%)
Median Width on Major Road MEDWIDTH], feet 0 6.5 0 (.58 87.8
Median Type on Major Road MEDTYPE
No Median 43 (87.8%)
Painted 1(2.0%)
Mixed 5(10.2%)
Angle variable HAU, degrees -45 40 0 0.102 67.35
Longitudinal Sight Distance on Major Road SD1, feet 267 2000+ 1538 1454+
Left-Side Sight Distance on Major Road SDL1, feet 186 2000+ 612 833+
Longitudinal Sight Distance on Minor Road SD2, feet 390 2000+ 1333 1406+
Left-Side Sight Distance on Minor Road SDL2, feet 253 2000+ 825 1007+

I ft=0.305m
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TABLE 7. Summary Statistics: 49 Signalized Rural Intersections (continued)
Four-legged intersections of two-lane roads, California and Michigan, 1993-1995

Variable and Abbreviation Min. Max. Median Mean Freq. %Zero
Degree of Curve HEI-1= (1/m)¥, DEGi, deg/100 ft 0 94.9 0 4.61 57.1
Curve Grade Rate VEI-1= (Um)Y. (JAgiyLi), %/100 fi 0 5.98 0.67 1.26 38.8
Crest Grade Rate VCEI-1= (HmyY, (JAgiVLI), %100 it 0 0.88 0 .01 51.0
Degree of Curve HE1-2 = (1/m)}, DEGHI, deg/100 ft 0 36.4% 0 2.27 73,57
Curve Grade Rate VEI-2 = (1/m)L, {{Agil/Li), %/100 ft 0 11.97 1.25 2.24 24.5
Crest Grade Rate VCEI-2 = (1/m)Y, (JAgil/Li), %/100 ft 0 12,13 1 1.88 327
Average Absolute Grade on Major Road ABSGRDI, % 0 3.45 0,73 .83 28.6
Average Absolute Grade on Minor Road ABSGRD2, % 0 53 0.71 1.00 18.4
Speed Limit on Major Road SPD1, mph 30 G5 55 48.7
Speed Limit on Minor Road SPD2, mph 25 55 45 43.8
Protected Left Turn PROT_LT 0=no 28 (57.1%) 571

i =yes 21 (42.9%)
Signal Type SIG_TYPE Pre-Timed 22 (44.9%)

Actuated 21 (42.9%)

Semi-Actuated 6 (12.2%)
Light at Intersection LIGHT 0=no 10 (20.4%)

1 =yes 39 (79.6%)
Terrain Flat 36(73.5%)

Roliing 11 {22.4%)

Mountainous 2(4.1%)
STATE 0=CA 18 (36.7%)

i =Ml 37 (63.3%)

1 ft=0.305m, | mph = 1.61 km/h
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Crash Data Versus Intersection Class and State

Table 8 is an extract from Tables 3, 6, and 7, comparing the mean number of crashes per intersect
for the three intersection classes. It indicates that four-legged intersections have from 1.42 to 1.
times as many crashes as three-legged intersections. The higher ratio comes into effect as the crash
severity and the intersection-relatedness increase. This 1s consistent with the rough rule of thumb

TABLE 8. Mean Number of Crashes per Intersection by Crash Variable and Intersection

Class
three-legged four-legged signalized
TOTACC 3.88 5.53=1.42x3.88 20.8=3.76x5.53
TOTACCI 2.62 4.13=1.58x2.62 16.1=3.90%x4.13
INJACC 1.61 2.64=1.64%1.61 7.47=2.83%2.04
INTACCI 1.21 2.19=1.81x1.21 6.14=2.80%2.19

that a four-legged intersection behaves like a pair of three-legged intersections, with a consequent
crash ratio of 2. Note that average major and minor road ADT’s, ADT1 and ADT2, in Tables 5 and
6 for three-legged and four-legged intersections, respectively, are very nearly equal, and thus that

the comparison of three-legged and four-legged intersections s justifiable.

With regard to the signalized intersections, Table 8 indicates that they have from 3.90 tc 2.80 times
as many crashes as four-legged intersections. These two intersection classes have in common four-
leggedness, but otherwise are quite different (lanes, control, and ADT). Nonetheless, it appears that
intersection-relatedness, i.c., all crashes versus those satisfying the BMI criteria (see p. 40), has a

neOhglble effect on the crash ratio, but that the fraction of serious crashes is lower at signalized

13 at the four-le goe d 1ntercpr-hr\nq

Table 9 provides a decomposition of crashes by severity and State for the three intersection classes.
With respect to State, it indicates that Michigan crashes tend to be less severe than California crashes
for all classes, regardless of intersection-relatedness. Regardless of State, signalized intersections
have the lowest percentage of serious crashes and four-legged intersections have the highest
percentage. Intersection-related crashes (TOTACCI) have a slightly higher tendency to be serious

than all crashes (TOTACC) for both States and all three intersection classes.

The data in Table 9 are represented in another way in Table 10. Table 10 indicates that California
is underrepresented in crashes in both the four-legged and signalized intersection samples and partly
underrepresented in the three-legged intersection sample. It also shows that such under-

representatmn decreases for serious crashes and that for the three-legged intersections, California
is overrepresented in serious crashes. The modeling later in this report will attempt to sort out
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BIVARIATE STATISTICS

To prepare for model development, it is appropriate to ask what variables
crash counts and to note the mutual correlations of highway variables w h one another.

In the tables that follow, correlation coefficients between variables are shown, along with P-values,
for each of the three data sets. Recall that the P-value is the estimated probability that the measured
correlation coefficient would be at least as far from 0 as it is found to be if the true corrciuiivn
coefficient for the population from which the sample is drawn is zero. A small P-value indicates that
a correlation is significant, a large one indicates that no particular significance can be attached to 1t.
The correlation coefficient summarizes the sample: if it is positive, the variables compared tend to
increase together in the sample; if it is negative, they tend to decrease together. If the correlation
coefficient is far from zero and its P-value is small, the sample is unlikely to have been drawn from
a population where the true correlation is zero; if the correlation coefficient is close to zero and 1ts
P-value is large, the sample resembles a sample drawn randomly from a population whose overall
correlation coefficient is zero.

Other cautions should be offered in the interpretation of correlation coefficients. If a variable
correlates strongly with, say, number of crashes, it may be that the variable is not in itself influential,
but that it happens to correlate strongly with another variable that is influential. Likewise, if a
variable seems to have a weak correlation with the number of crashes, it may be in part because the

influence of the variable is masked by the presence of other more influential variables. The point
of modeling is to determine the leading influences and then discover secondary influences, ¢.g.,
crashes may be strongly dependent on ADT, but after ADT is properly taken into account, the

residual, the portion of crash count that cannot be expressed in terms of ADT, may be strongly

correlated with another variable.

Crashes Versus Other Variables

Tallac 11 19 ot ey 3 .
Tables 11, 12, and 13 exhibit correlation coefficients and P-values between crash counts and othe:
variables for the three data ets

Table 11 exhibits the correlations between intersection crashes and highway variables for the three-

legged intersections. Major and minor road ADT’s correlate positively with crashes, as expected.

Peak tuming percentages also correlate with crashes, both positively and negatively. Since these
turning percentages correlate with each other, it is not immediately clear what the chief influences
are. While HAZRAT is insignificant, number of driveways correlates positively with crashes and
median width correlates negatively; neither result ts unexpected. The angle variables HAU and DEV
are both significant, with HAU more so than DEV. The sign, however, is not what the Kulmala
(1995) study suggests, but it is consistent with the work of Vogt and Bared (1998) for three-legged
intersections. Sight distance is not significant, although minor road sight distance left is marginally
significant. Both left and right turns from the minor road are affected by sight distance left. The
horizontal variable HEI-1 and the vertical variables VI-1 and VEI-1 are significant. LIGHT and
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TABLE 11. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Three-Legged Intersections
84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95

Highway Variable TOTACC INJACC TOTACCI INJACCI
Corr, P-value Corr. P-value Corr. P-value Corr, P-value
ADTI1 0.3623 0.0007 (0.3383 0.0016 0.3810 0.0003 0.3223 0.0028
ADT2 0.5009 0.0001 0.3780 0.0004 0.3007 0.0001 04215 0.0001
PK2%TRUCK -0,2502 0.0217 | -0.1540 0.1620 -0.2662 0.0144 | -0.15%6 0.1470
PEK%TURN 0.2574 0.0181 0.2362 0.0305 0.3113 0.0039 0.2811 0.0096
PK%LEFT 0.2323 0.0335 0.2142 0.0504 0.2834 (0.0090 0.2574 0.0181
PK9%THRU1 -0.2170 0.0474 | -0.1745 0.1123 -0.2819 0.0094 | -0.2242 0.0403
PK%LEFT1 0.2786 0.0103 0.2612 0.0164 0.3098 0.0041 0.2884 0.0078
PKY%LEFT?2 -0.2090 0.0588 | -0.1628 0.1440 -0.1900 0.0873 | -0.1446 0.1950
HAZRAT -0.0720 0.5150 0.0449 0.6850 -0.0419 0.7050 0.0595 0.5907
NODRWY1 0.3888 0.0003 0.1591 0.1484 0.4132 0.0001 0.1876 0.0874
LTLNt -0.1753 0.1106 0.0190 0.8635 -0.1347 (0.2218 | -0.0086 0.9382
RTLNI -0.1203 0.2757 0.0041 0.9704 -0.0717 0.5168 | -0.0242 (.8267
LTLN2 0.1691 0.1241 0.1579 0.1515 0.1563 0.1556 0.1564 0.1553
RTLN2 (.1552 0.1386 0.1210 0.2728 0.1519 0.1677 0.1411 0.2005
MEDWIDTHI1 -0.2557 0.0189 ¢ -0.1252 0.2566 -0.2259 0.0388 | -0.1223 0.2679
HAU 0.2871 0.0081 0.3817 0.0003 0.2265 0.0383 0.3733 0.0004
DEV 0.1743 0.1127 0.2422 0.0264 0.1332 0.2269 0.2401 0.0278
RSDI1 0.0775 0.4836 0.0778 0.4818 0.1126 0.3079 0.0736 0.5061
RSDL2 0.1597 0.1467 0.1264 0.2520 0.0908 0.4116 0.1143 0.3006
RSDR2 0.0084 0.5366 0.1606 0.3625 0.0626 0.5717 0.0861 0.4361
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TABLE 11. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Three-Legged Intersections (continued)

i e i

84 rural intersections, major road 4-lane, minor leg stop-controfled, CA and ML, 1993-95

Highway Variable TOTACC INJACC TOTACCIT INJACCI
Corr. P-value Corr, P-value Corr. P-value Corr. P-value |

HI-1 0.0552 0.6181 0.0834 0.4307 0.0489  (.6590 0.0753 0.4958
HEI-1 0.2366 0.0303 0.1786 0.1041 0.1946  0.076] 0.1676 0.1275
Vi-1 0.1742 0.1131 0.1614 0.1426 (.2437 0.0255 0.2287 (1.0364
VEI-1 0.1673 0.1283 0.1530 0.1647 0.2208 0.0436 0.2060 0.0601
VCI-1 0.0251 0.8210 0.0513 0.6429 0.0637 0.5647 0.0676 0.5410C
VCEI-1 0.1321 0.2308 0.1234 0.2633 0.1774 0.1065 0.1922 0.0799
ABSGRDI 0.0099 0.9288 0.1158 0.2942 0.0492 0.6567 0.0931 0.3997
SPD1 -(.3688 00006 1 -0.1314 0.2334 | -0.3509  0.0011 -0.13591 0, 1483
SPD2 -0.1133 0.3047 0.0174 0.8753 -0.0208 0.8513 0.0664 0.5483
LIGHT 0.3290 0.0022 0.2163 0.0481 0.3242 0.0026 (.2078 0.0579
STATE 0.1459 0.1833 | -0.0823 0.4568 0.0327 (0.7680 | -0.1054 0.3402

major road speed (SPD1) correlate positively and negatively, respectively, with crashes, but they also
correlate positively and negatively, respectively, with minor road ADT (cf. Table 15), and this
may be an example of one variable representing another. The same applies to Peak Truck
Percentage, which correlates negatively with both crashes and ADT (Tables 11 and 15). The
variable STATE does not seem to play an important role in three-legged intersection crashes.

In Table 12, similar correlations are found between crashes on four-legged intersections and highway
variables. ADT] is a bit less significant than in the three-legged case. Peak turning percentages
correlate with crashes, but the minor road turning percentages are less significant. HAZRAT
remains insignificant, but now it is joined by number of driveways and median width, which are alsc
insignificant. The typical Hazard Rating and number of driveways at four-legged intersections arc
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TABLE 12. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Four-Legged Intersections

72 rural intersections, major road 4-lane, minor legs stop-contro

1
i
i

A
£

led, CA an

d M, 1993-95

Highway Variable TCTACC INJACC TOTACCI INJACCI
Corr. P-value Corr. P-value Corr. P-value | Corr. P-value

ADT1 0.1519 0.2027 0.3088 0.0083 0.1642 0.1682 0.2705 0.0216
ADT2 0.4801 0.0001 0.3i23 0.0076 0.4612 0.0001 0.2945 0.0120
PK%TRUCK -0.3035 0.0096 | -0.3154 0.0070 -0.2932 0.0124 | -0.3003 0.0104
PK%TURN 0.3225 0.0057 0.1651 0.1659 0.3400 (0.0035 0.1810 0.1282
PK2%LEFT 0.3117 0.0077 0.1598 0.1799 0.3238 (.0052 0.1745 0.1426
PK%THRU1 -0.3022 0.0099 { -0.1457 0.2219 -(0.3263 0.0052 | -0.1647 0.1668
PK%LEFT1 0.3532 0.0023 (.2020 0.0889 0.3794 0.0010 0.2190 0.0645
PK%THRU?2 0.1688 0.1625 0.0813 0.5033 0.2013 0.0948 0.1081 0.3729
PK%LEFT2 -0.1021 0.4003 | -0.0883 0.4674 -0.1088 0.37G62 | -0.0961 0.4288
HAZRAT -0.1663 0.1628 | -0.1452 0.2237 -0.1367 0.2521 -0.1294 (0.2789
NODRWY1 0.1780 0.1346 0.0389 0.7455 0.1702 0.1528 0.0132 0.9121
LTLN1 -0.2904 0.0133 | -0.0602 0.5809 -0.1828 0.1244 { -0.0127 0.9136
RTLNI1 -0.1910 0.1080 | -0.0525 0.6612 -0.1352 0.25374 | -0.045G 0.7076
LTLN2 0.1689 0.1562 0.1723 0.1478 0.2181 (0.0657 0.2016 0.0R95
RTLN2 -0.0998 0.4042 | -0.0056 0.9631 -0.1006 0.4007 | -0.0132 0.9124
MEDWIDTH1 -0.1379 0.1852 0.0102 0.9324 01172 0.2270 0.0289 0.8093
HAU 0.0101 0.9330 1 -0.0572 (0.6333 -0.0413 0.7307 | -0.0940 04320
DEV 0.0399 0.6174 0.1381 0.2473 0.0416 0.7289 01117 0.3500
RSD1 0.0884 0.4604 0.0095 0.9369 0.0619 0.6054 0.0168 0.8889
RSDL2 0.1278 0.2850 0.0110 0.9270 0.0846 0.4800 1 -0.0004 0.9971
RSDR2 0.3314 0.0045 0.2060 0.0826 0.3420 0.0033 0.2068 0.0814
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TABLE 12. Correlation Coefficients and P-Values for Crashes Versus Other Variables,

Four-Legged Intersections (continued)

72 rural intersections, major road 4-lane, minor legs stop-controiled, CA and M, 1993.95

Highway Variable TOTACC INJACC TOTACCI INJACCI
Corr. P-value | Corr. P-value Corr. P-value Corr. P-value
HI-1 0.0396 0.7411 -0.0740 0.5366 1 -0.0139 0.9081 -0.0487 0.6848
HEI-1 -0.0423 0.7240 -0.0481 0.6880 | -0.0829 0.4890 | -0.0762 (0.5249
VI-1 -0.0414 0.7298 0.0147 (3.9025 -0.0453 0.7057 0.0081 (3.9459
VEI-1 -0.0087 0.9421 0.0096 0.9360 | -0.0181 0.8304 0.0033 0.9781
VCI-1 -0.0323 0.7879 -(3.0018 0.9880 | -0.0477 0.6908 | -0.0041 0.9725
VCEI-1 0.0281 0.8145 (.0330 0.7831 0.0075 0.9499 00123 09171
ABSGRD1 -0.0177 0.8826 -0.0332 0.7822 | -0.0012 G.9918 | -0.0140 0.9073
SPD1 -0.2753 0.0193 -0.0306 0.7988 | -0.2477 0.0339 [ -0.0007 0.9957
SPD2 -0.0778 0.5158 0.2541 0.0312 | -0.0006 0.9963 0.2742 0.06167
LIGHT 0.0393 0.7430 -0.0377 0.7533 0.6105 0.9303 -0.0633 0.5976
STATE 0.3441 0.0031 0.0827 0.4898 0.2032 0.0869 0.0251 0.8340

slightly less than they are at three-legged intersections, and this perhaps 1s relevant. However,
median width, on average, is as high at four-legged intersections as at three-legged intersections,
with a lower percentage of zero medians at four-legged intersections. Four-legged geometries,
perhaps, lessen the safety effect of medians.

As with the three-legged intersections, major road turming lanes tend to decrease the number of
crashes (or are insignificant for injury crashes), while minor road turning lanes increase the number
of crashes or are insignificant. In the three-legged case, minor road tumning lanes correlate strongly
with minor road ADT, but this is not true for four-legged intersections. Peak truck percentage still
correlates negatively with crashes and positively with ADT (Table 16), but LIGHT, which there is
more of on the four-legged intersections, is now insignificant.

Neither angle variable HAU or DEV is significant on the four-tegged intersections. Perhaps this is




TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Signalized Intersections
49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95

Highway Variable TOTACC INJACC TOTACC! INJACCE
Corr. P-value Corr. P-value Corr. P-value | Corr, P-value

ADTI1 (0.0166 0.9099 0.0330 0.8219 0.0686 0.6393 (.0537 0.7138
ADT2 0,4490 0.0012 0.1G620 0.4857 0.3873 G.0060 0.0392 0.7893
PROTRUCK 0.2675 0.0631 0.4431 0.0014 0.2760 0.0549 0.4308 0.0020
PK%TURN 0.2110 0.1457 0.0147 0.9202 0.1496 0.3049 | -0.0642 0.6615
PK%LEFT 0.2175 0.1233 0.0022 0.9879 (.1489 0.3071 -0.0801 0.58435
PK%THRUI1 -0.2693 0.0614 | -0.0660 0.6324 -(.2472 0.0868 | -0.0086 0.9333
PK%LEFT1 0.3557 0.0121 0.1521 0.2967 0.3507 0.0135 0.1450 0.3203
PK%THRU?2 0.1482 0.3096 0.1176 0.4210 0.1996 0.1692 0.1686 0.2468
PK%LEFT2 -0.3230 0.0236 | -0.2526 0.0800 -(1.3629 0.0104 | -0.3101 0.0301
HAZRAT 0.0136 0.9260 0.0890 0.5433 0.0631 0.60667 0.1462 0.3163
NODRWY1 0.4005 0.0044 0.1823 0.2099 0.3641 0.0101 0.1021 0.4852
NODRWY?2 0.0255 0.8618 0.0179 0.9028 0.0331 0.8212 0.0014 0.9924
LTLN1 -0.2046 0.1584 | -0.0058 0.9683 -0.1022 0.4849 0.1088 0.4569
RTLN1 -0.1107 (0.4490 | -0.0728 0.6194 -0.1085 0.4582 1 -0.0824 0.5737
LTILN2 -0.1755 0.2277 1 -0.0760 0.6037 -0.1838 0.2062 | -0.0088 0.6387 l
RTLNZ2 0.2425 0.0932 0.1363 0.3504 0.2216 0.1260 0.1301 0.3730
MEDWIDTH1 -0.0394 0.7882 1 -0.0216 0.8827 0.0190 0.8968 0.0401 (0.7843
HAU -0.0070 0.9610 0.0079 0.9571 0.0535 07133 0.0533 0.7163
DEV -0.0587 0.6886 § -0.1496 0.3051 -0.0874 0.5504 | -0.1639 0.2605
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TABLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables,

Signalized Intersections (continued)

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95

Highway Variable TOTACC INJACC TOTACCI INJACCI
Corr. P-value | Corr. P-value | Corr. P-value | Corr. P-value
RSD1 -0.1129 0.4401 | -0.0403 0.7832 | -0.0984 0.3013 | -0.0473 0.7468
RSDLI -0.2085 0.1505 | -0.1310 0.3695 | -0.2115 0.1446 | -0.1613 (.2081
RSD2 0.0079 0935711 -0.0165 0.9104 0.0197  0.8929 | -0.0421 0.7739
RSDL2 -0.0615 0.6749 | -0.0829 0.5713 | -0.0662 0.6514  -0.1134 0.4379
HI-1 -0.2232 0.1232 | -0.1936 0.1825 | -0.2398 0.0970 | -0.1815 0.2120
HEI-1 -0.0152 0.9177 | -0.0892 0.5421 | -0.0651 0.6567 | -0.1457 0.3178
HI-2 -0.2391 0.0980 { -0.2039 0.1601 | -0.2230  0.1236 | -0.1867 0.1990
HEI-2 -0.1749 0.2295 | -0.1540 0.2907 | -0.1487 0.3079 | -0.1363 0.3503
HICOM -0.3268 0.0219 1 -0.2815 0.0501 | -0.3317  0.0199 | -0.2613 0.0697
HEICOM -0.0817 0.5766 { -0.1434 (.3258 | -0.1186 04169 [ -0.1897 0.1918
Vi-1 0.0634 0.6654 0.0277 0.8504 0.0113 0.9386 0.0519 0.7230
VEI-1 0.2196 0.1294 0.1316 0.3674 0.1631 (.2627 0.0891 0.5429
VCI-1 0.1942 0.1811 0.1029 0.4818 0.0782 0.5933 0.0302 0.8308
VCEI-1 0.0465 0.7511 0.0069 0.9627 0.0069 0.9626 | -0.0549 0.7082
Vi-2 0.1356 0.3531 0.0931 0.5246 0.1388 0.3417 0.1295 0.3752
VEI-2 (.1486 0.3081 0.1038 0.4778 0.1524  0.2957 0.1353 0.3541
VCI-2 0.1065 0.4663 0.0355 0.8086 0.0988  0.4993 0.0729 0.6187
VCEI-2 0.1472 0.3127 0.0875 0.5501 0.1466 0.3147 0.1217 0.4050
VICOM 0.1417 (.3316 0.0903 0.5372 0.1214 0.4061 0.13153 0.3677
VEICOM 0.2188 0.1310 (.1437 0.3245 .1985 0.1715 0.1530 0.2938
VCICOM 0.1633 0.2621 0.0676 0.6442 0.1163 0.4263 0.0762 (3.6020
VCEICOM 0.1534 0.2927 0.0815 0.5779 0.1345 0.3570 0.0834 0.5687
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TARLE 13. Correlation Coefficients and P-Values for Crashes Versus Other Variables,
Signalized Intersections (continued}
49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95

Highway Variable TOTACC INJACC TOTACCI INJACCI
Corr. P-value Corr, P-value Corr. P-value Corr. P-value

ABSGRDI1 0.0328 0.8228 | -0.0365 0.8032 0.0269 0.8345 | -0.0445 0.7614
ABSGRD?2 -0.0822 0.5744 | -0.0316 0.8294 | -0.1005 0.4920 | -0.0461 0.75330
SPD1 -0.1201 0.4111 0.1354 0.35338 | -0.0744 0.6112 0.2006 0.1670
SPD2 0.0246 0.8668 0.2031 0.1616 0.0960 0.5118 0.2816 0.0499
PROT LT -(1.25235 0.0414 ¢+ -0.0767 0.6006 | -0.1242 (0.3931 0.0307 {().8340
LIGHT -0.1336 0.3601 | -0.0670 0.6473 | -0.0619 0.6729 | -0.0827 0.5723
STATE 0.3690 0.0091 0.1817 0.2115 0.1977 0.1732 0.0481 0.7429

because they are less variable on the four-legged intersections than on the three-legged intersections,
with standard deviations on the three-legged intersections being about twice what they are on the
four-legged intersections. Minor road sight distance right is significant on the four-legged
intersections, an indication that left-turn and through traffic on the minor road may havc a greater
tendency toward crashes than right-turn traffic. All remaining alignment variables, including grade,
are insignificant on the four-legged intersections. STATE appears to be significant for four-legged
intersections, and this is consistent with Table 10. :

Correlation coefficients of crashes with other variables for the signalized intersections are shown in
Table 12. Remarkably, ADT1 is insignificant, and ADT2 is insignificant for injury crashes. This
is perhaps due to the relatively small sample size and the presence of a variety of other influentia!
factors. Peak Truck Percentage, which negatively correlates with ADT (cf. Table 106), although
weakly, has a strong positive correlation with crashes. Peak turning percentages have some
significant correlations, positive and negative, with crashes, and they will be examined more closely
Jater in this chapter. HAZRAT, channelization, median width, and the angle variables are generally
insignificant. Median widths are mostly zero, but HAU and DEV, the angle variables, are about as
variable as in the three-legged intersections and still have a negligible effect. Sight distances and
horizontal alignment are generally insignificant with the wrong sign. This indicates that when other
factors are ignored, shorter sight distance and more horizontal curvature lead to fewer crashes. On
the other hand, vertical alignment, although generally insignificant, has the right sign: other factors
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ignored, crashes rise with more grade change per unit distance. Speeds, though generally
insignificant, seem to correlate positively with injury crashes. The existence of a protected left turn,
which correlates positively with major road ADT, correlates negatively with crashes, as one might
expect. This may, in part, account for the poor showing of ADTIL. F inally, LIGHT is insignificant,
but STATE shows a positive correlation with crashes.

As a general rule, correlations are similar for TOTACC and TOTACCI, and for INJACC and
INJACCL However, there are significant differences as one passes from all crashes to serious
crashes (from TOTACC to INJACC, or from TOTACCI to INJACCI). Jtems that stand out include

the following:

s ADT1 and ADT2 are both significant at three-legged and four-legged intersections, with
ADT? generally more significant; but at the signalized intersections, neither is significant
except ADT2 with TOTACC and TOTACCL

o PK%TRUCK correlates negatively with crashes of all types at three-legged and four-iegged
intersections and positively at signalized intersections.

e Peak turning percentage variables correlate strongly with crashes of all types at three-legged
and four-legged intersections, and with TOTACC and TOTACCI at signalized interscctions.

o  NODRWY1 correlates positively with TOTACC and TOTACCT at all intersection types, but
correlates insignificantly with INJACC and INJACCI at four-legged and signalized
intersections.

«  MEDWIDTHI correlates negatively with TOTACC and TOTACCT at three-legged and four-
legged intersections, but insignificantly with INJACC and INJACCL

+ Channelization variables correlate less significantly with INFACC and INJACCI than with
TOTACC and TOTACCI and sometimes have correlation coefficients of unexpected sign.

e HAU and DEV correlate strongly with all crash types at three-legged intersections,

o Sight distance variables generally have insignificant correlation, except for RSDR2 at four-
legged intersections, which correlates positively with all crash types.

 Horizontal alignment variables have insignificant correlation and/or correlation coefficients
with unexpected sign, except for HEI-1 at three-legged intersections, while HICOM
correlates negatively with all crash types at signalized intersections (fewer crashes at
signalized intersections with major or minor road horizontal curves out to 250 feet (76
meters)).
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« Vertical alignment variables are insignificant and/or have correlation of unexpected sign,
except for VI-1 and VEI-1 at three-legged intersections and VEICOM at signalized
intersections, the effect being stronger for TOTACC and TOTACCI than for INJACC and

INJACCL

s SPDI correlates negatively with TOTACC and TOTACCI at three-legged and four-legged
intersections; SPD2 correlates positively with INJACC and INJACCI at four-legged and
signalized intersections.

o LIGHT correlates positively with all crash types at three-legged intersections.

o STATE correlates positively with TOTACC and TOTACCI at four-legged and signalized
intersections.

e PROT LT correlates negatively with TOTACC, but not significantly with INJ ACC and
INJACCI for signalized intersections.

Information pertaining to TOTACC is summarized in Table 14. Features not aiready mentioned that
are related to TOTACC include:

e ADTI has lessened significance as one passes from three-legged to four-legged to signalized
intersections.

« LIGHT correlates positively with TOTACC at three-legged and four-legged intersections
(perhaps because lights are placed at high crash locations).

o LTLNI correlates negatively with TOTACC on all three data sets.
» At three-legged intersections, HEI-1 and RSDL?2 correlate positively with TOTACC.

s At four-legged intersections, horizontal and vertical variables have correlation coefficients
of mixed signs with TOTACC, while all sight distances have coefficients of appropriate
signs, with RSDR2's being significant.

» At signalized intersections, vertical variables have positive corrclation with TOTACC,
horizontal variables have negative correlation, and sight distance variables have mixed
correlation.

ADT and State Versus Other Variables
It is generally recognized that ADT is the most important explanatory variable in modeling crashes.

It is therefore appropriate to make a special effort to determine when other variables are correlated
with ADT so that one can begin to distinguish effects that are properly due to these variables apart
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TABLE 14, Correlates of TOTACC

84 Three-legged Intersections

Positive correlates

Negative correlates

Insignificant correlates

ADTI*, ADT2*
PK%TURN*, PK%LEFT*
PK%LEFT1*
PK%RIGHT2* (82 int.)
NODRWY 1*, HAU*, DEV*
HEI-1*, LIGHT*

L TLN2, RTLN2, RSDL2
VI-1, VEL-1, STATE

PK%TRUCK*
PK%THRU1*
PK%ILEFT2* (82 int.)
MEDWIDTH1*
SPD1*

LTLN1

PK%RIGHT]I
HAZRA'l (neg)
RTLNI (neg)
RSD1, RSDR2
HI-1

V(CI-1, VCEI-1
ABSGRDI1
SPD2 (neg)

72 Four-legged Intersections

Positive correlates

Negative correlates

Insignificant correlates

ADT2*

PK%TURN*

PK%LEFT*, PK%LEFTI*
PK%RIGHT1*

RSDR2*, STATE*
PK%THRU2 (70 int.)
NODRWY1, LTLN2
ADT1 (P-value = 0.2027)

PK%TRUCK*
PK%THRUI1*
LTLNI1*
SPD1#
HAZRAT
RTLNI1
MEDWIDTHI1

PK%LEFT2, PKY%RIGHT2
(both neg., 70 int.)

RTINZ (neg), HAU, DEV
RSD1, RSDL2, HI-1

HEI-1 (neg), VI-1 (neg)
VEI-1 {(neg), VCI-1 (neg)
VCEI-1, ABSGRD! (neg}
SPD2 (neg), LIGHT

49 Signalized Intersections

Positive correlates

Negative correlates

Insignificant correlates

ADT2*, PK%TRUCK*
PK%IEFT1*
NODRWY1*,
NODRWYCOM*

F,*, F,*, STATE*
RTLN2*, PK%TURN
PK%LEFT, VCI-1,VEI-1
VEICOM

PK%THRU1*
PK9%LEFT2*
PROT_LT*

HI-2*, HICOM*, HI-1
LTLN1, RSDLI

ADT!, I, F,, PK%RIGHT!
PK%THRUZ, PK%RIGHT?2
HAZRAT, NODRWY2

LTLNI1, RTLN1 (neg)
MEDWIDTHI (neg)

HAU, DEV (both neg)

RSDI, RSDL2 {(both neg), RSD2
HEI-1, HEI-2 (both neg)
HEICOM {(neg)

VI-1, VCEI-1

vI-2, VvCI-2, VEI-2, VCEI-2,
VICOM, VCICOM, VCEICOM

. ABSGRD1, ABSGRD2 (neg)

SPDI1 (neg), SPD2, LIGHT (neg)

“Insignificant” means P-value in excess of 0.20, “*” means P-value less than 0.10
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TABLFE 15. Correlation Coefficients and P-Values for ADT and STATE Versus
Intersection Variables, Three-Legged Intersections
84 rural intersections, major road 4-lane, minor leg stop-controlled, CA and MI, 1993-95

Highway ADT1 ADT2 STATE
Variable

Corr. P-value Corr. P-value Corr. P-value
ADTI 1.0000 0.0000 0.1612 0.1429 | -0.1156 {.2951
ADT2 0.1612 (.1429 1.0000 0.0000 0.2240 0.0406
STATE -0.1156 0.2931 0.2240 0.0406 1.0000 0.0000
PK%TRUCK -0.2349 0.0315] -0.2211 0.0433 | -0.0993 0.3686
PK%TURN -0.1079 0.3280 0.6842 0.0001 0.0251 0.8208
PK%LEFT -0.1319 0.2317 0.6658 0.0001 0.0530 0.6323
PK%THRU1 0.1024 0.3540 1 -0.6183 0.0001 0.0213 0.8477
PKSLEFTI -0.0353 0.7500 0.6404 (.0001 0.0132 0.9052
PK%%LEFT2 -0.2709 0.0138 | -0.1145 0.3058 | -0.0380 (.7345
HAZRAT 0.1403 0.2025 1 -0.1416 0.19%0 | -0.4795 0.0001
NCDRWY1 (0.1347 0.2217 0.2166 0.0478 0.2425 0.0262
LTLNI 0.2027 0.0644 | -0.1127 0.3076 | -0.6794 0.0001
RTLN1 0.2585 0.0176 | -0.0218 0.8442 | -0.3067 0.0045
LTLN2 (.0195 0.8601 0.4336 0.0001 | -0.1217 0.2701
RTLN2 0.0311 0.7786 0.2513 0.0211 0.1744 0.1127
MEDWIDTH1 0.0251 0.8211 1] -0.2267 0.0381 | -0.3923 0.0002
HAU -0.0164 0.8823 0.1250 0.2574 0.2042 0.0624
DEV 0.0992 0.3691 0.0418 0.7056 | -0.0654 0.5545
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TABLE 15. Correlation Coefficients and P-Values for ADT and STATE Versus
Entersection Variables, Three-Legged Entersections (continued)
84 rural intersections, major road 4-lane, minor leg stop-controlied, CA and M1, 1993-95

Highway ADTI1 ADT2 STATE
Variable

Corr. P-value Corr. P-value Corr. P-value
RSD1 0.2673 0.0140 0.0576 0.6030 0.0280 0.8003
RSDL2 0.1149 0.2998 | -0.0424 0.7620 | -0.0923 (.4038
RSDR2 0.1339 0.2248 0.0034 0.9755 | -0.0818 0.4597
HI-1 0.0765 (0.4892 0.0214 0.8472 t -0.0258 0.8160
HEI-1 0.1326 0.2294 0.0347 0.7540 0.1134 0.3043
VI-1 0.2868 0.0082 0.0772 0.4852 | -0.0484 0.6623
VEI-1 0.2501 0.0218 0.0509 0.6455 | -0.0471 0.6706
VCI-1 -0.0203 0.8545 ; -0.0719 0.5159 0.1620 0.1410
VCEI-1 0.1607 (0.1442 0.0854 0.4401 0.0467 0.6733
ABSGRDI 0.1299 0.2389 | -0.0680 0.5387 1 -0.3052 0.0048
SPD1 -(0.0703 0.5250 | -0.2895 0.0076 | -0.4397 0.0001
SPD2 0.0375 0.7348 | -0.1394 02061 | -0.7916 0.0001
LIGHT 0.0917 0.4070 0.3625 0.0007 03178 0.0032
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TARBLE 16. Correlation Coefficients and P-Values for ADT and STATE Versus

intersection Variables, Four-Legged Interse

¢ctions

72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and M1, 1993-
Highway ADT1 ADT2 STATE
variable 5 T 1 (‘1 i e) 1 Fa 1

Corr. P-value | Corr. P-value | Corr. P-value
ADTI1 1.0000  0.0000 | -0.1083  0.3653 | -0.1436  0.2288
ADT2 -0.1083 03653 1.0000 0.0000 | 04082  0.0004
STATE -0.1436  0.2288 | 0.4082  0.0004 | 1.0000  0.0000
PK%TRUCK -0.2673  0.0232 | -0.2044  0.0850 | -0.2459  0.0374
PK%TURN -0.3284  0.0049 | 0.6402  0.0001 | 02795  0.0174
PK%LEFT -0.3205  0.0061 | 0.5921  0.0001 ¢ 02622  0.0261
PK%THRUI 0.3087  0.0083 | -0.6207  0.0001 | -0.2240  0.0586
PK%LEFTI -0.2754  0.0192| 0.5777  0.0001 | 02677  0.0230
PK%THRU?2 -0.3957  0.0007 | 0.3468  0.0033 | 0.0017  0.9231]
PK%LEFT2 0.2937  0.0136| -0.089¢  0.4609 | -0.0982 04186
HAZRAT 0.1181 03230 -0.2264  0.0558 | -0.3059  0.0090
NODRWY1 -0.0582  0.6272 | 0.2336  0.0483 | 0.3567  0.0021
LTLNI 0.0548  0.6474 | -0.2563  0.0297 { -0.8433  0.000%
RTLN1 0.1089 03623 | -0.0734  0.5403 | -0.42061 0.0002
LTLNZ2 -0.0736 05389 | 0.0935 04349 | -0.0976  0.4148
RTLN2 0.0991 04077 | -0.0642  0.5920 | -0.0761  0.5250
MEDWIDTHI 0.2571  0.0292 | -0.2597  0.0276 | -0.3968  0.0006
HAU -0.0431 07195 -0.0592  0.6214 | 0.0206  0.8636
DEV -0.0687 0.5663 0.0417 0.7282 0.0542 0.6514
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TABLE 16. Correlation Coefficients and P-Values for ADT and STATE Versus
Intersection Variables, Four-Legged Intersections (continued)
72 rural intersections, major road 4-lane, minor legs stop-controlled, CA and MI, 1993-95

Highway ADTI1 ADT2 STATE
Variable

Corr., P-value Corr. P-value Corr. P-value
RSD1 0.0798 0.5054 | -0.0628 0.6003 | -0.07006 0.5557
RSDIL2 0.0589 0.6233 0.0066 0.9560 | -0.0072 (0.9523
RSDR2 -0.0233 (.8458 02311 0.0508 | -0.0505 0.6372
HI-1 0.0037 0.6754 | -0.0549 0.6469 | -0.0881 0.4620
HEI-1 0.0080 0.9472 0.3428 0.0032 0.2339 0.0587
VI-1 -0.0115 09237 -0.1108 0.3540 0.1860 0.1178
VEI-1 -0.0132 0.9122 1 -0.1220 0.3075 0.1794 0.1316
VCI-1 -0.0741 0.5365 | -0.0976 0.4147 (0.2322 0.0497
YVCEI-1 -0.0215 0.8375 ] -0.0958 0.4233 0.2107 0.0757
ABSGRDI1 0.0926 (0.4392 | -0.2053 0.0837 ¢ -0.2760 0.0190
SPD1 0.2020 0.0888 | -0.3133 0.0074 1 -0.4738 0.0001
SPD2 0.0858 0.4738 | -0.0523 0.6627 | -0.5648 0.0001
LIGHT -0.1626 .1725 0.2560 0.0300 0.3873 0.0008
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TABLE 17, Correlation Coefficients and P-Vaiues for ADT and STATE Versus
Intersection Variables, Signalized Intersections
49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95

Highway ADTI1 ADT2 STATE
Variable

Corr. P-value Corr. P-value Corr. P-value
ADTI1 1.0000 0.0000 0.1965 0.1759 | -0.4544 0.0010
ADT2 .1965 (1.1759 1.0000 0.0000 0.2397 0.0972
STATE -0.4544 0.0010 0.2397 0.0972 1.0000 0.0000
PK%TRUCK -0.2051 0.1575 | -0.1001 0.4938 0.1836 0.2067
PK2%TURN -0.2818 0.0498 0.4554 0.0010 0.3116 0.0293
PK%LEFT -0.2630 0.0679 (,4940 0.0003 (0.2893 0.0438
PKY%THRU1 0.3358 0.0183 | -0.5271 0.0001 | -0.1819 02111
PK%LEFT 1 -0.1856 0.2018 0.5179 0.0001 0.0997 0.4655
PKOTHRU2 0.3224 (0.0239 0.1868 0.1988 | -0.0342 0.8157
PK%LEFT2 0.1800 0.2158 1 -0.1472 0.3127 | -0.0214 (0.8839
HAZRAT 0.2309 0.1105| -0.1939 0.1818 | -0.3096 0.0304
NODRWY1 -0.0642 0.6611 (0.3133 0.0284 0.3613 0.0108
NCDRWY?2 0.1781 0.2209 0.1905 (0.1899 | -0.0278 (0.8495
LTLNi1 0.1756 0.2276 | -0.0651 0.6569 1 -0.3305 0.0204
RTLNI -0.1709 0.2404 1 -0.0648 0.6583 | -0.0633 (0.6657
LTLNZ -0.3372 0.0178 0.0284 0.8463 0. 1088 0.4570
RTLNZ -0.0858 (0.5578 0.3733 0.0083 0.2100 0.1476
MEDWIDTHI -0.0155 0.9159 | -0.1377 0.3456 | -0.3992 0.0045
HAU 0.1417 0.3313 | -0.1621 0.2659 | -0.2000 0.1682
DEV -0.1103 0.4504 | -0.0192 (.8957 (0.0573 0.6956
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TABLE 17. Correlation Ceefficients and P-Valaes for ADT and STATE Versus
Intersection Variables, Signalized Intersecticns (continued)
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Highway ADT! ADT2 STATE
Variable Corr. P-value Corr. P-value Corr. P-value
RSD1 0.5043 0.0002 0.0011 0.9940 | -0.1830 0.2081
RSDIL1 0.3642 0.0101 | -0.1004  0.4927 | -0.1342 0.3578
RSD2 0.3954  0.0049 0.1336  0.2921 | -0.0701 0.6320
RSDL2 0.0701 0.6325 | -0.0805 0.5827 | -0.0702 0.6317
HI-1 -0.1852  0.2027 | -0.0016  0.9944 | O0O.1156 0.4289
HEI-1 0.0018 0.9903 0.3390  0.0172 0.1476 0.3115
HI-2 0.1542 0.2900 | -0.0449 0.7596 | -0.2588 0.0726
HEI-2 0.1706  0.2412 1 -0.0373 0.7994 | -0.2991 0.0368
HICOM -0.0688  0.6386 | -0.0266  0.8500 | -0.0503 0.7314
HEICOM 0.0675 0.6448 0.3044  0.0334 0.0234 0.8730
Vi-1 -0.0187 0.8987 | -0.0131 0.9287 0.0289 0.8439
VEI-1 -0.0722 0.6221 0.1015 0.4875 0.149¢6 0.3048
VCI-1 -0.0985 0.5009 | 0.0558  0.7036 | 0.2036 0.1565
VCEI-1 0.1259  0.3889 0.0336  0.8187 0.0880  0.5478
Vi-2 -0.1754  0.2281 | -0.164%  0.2575 | -0.1547 0.2886
VEI-2 -0.1287  0.3783 | -0.1801 0.2156 | -0.1431 0.3267
V(Ci-2 -0.1837  0.2064  -0.1725 0.2359 | -0.i489 0.3073
VCEI-2 -0.1569  0.2818 | -0.1358  0.3523 | -0.1089 0.4566
VICOM -0.1553 0.2866 | -0.1441 0.3233 | -0.1170 0.423
VEICOM -0.1403 0.3361 | -0.1123 0.4424 | -0.0605 0.6794
VCICOM -0.1999 0.1685 7 -0.1364 03500 | -0.0033 0.0658
VCEICOM -0.0820 0.5754 | -0.1059  0.4688 | -0.05606 0.6992




TABLFE 17. Correlation Coefficients and P-Values for ADT and STATE Versus

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and M1, 1993-95
Highway ADT1 ADT?2 STATE
Variable ') ) 1 r n 1 ' m 1

Corr.  P-value Corr. P-value Corr. P-vaiue
ABSGRDI1 -0.0795  0.5873 -0.0396  0.7871 -0.0446  0.7611
ABSGRD?2 -0.0075 09590 -0.1583 0.2774 -0.0037  0.9800
SPD1 -0.1053  0.4713 -0.3336  0.0192 -0.1853  0.2025
SPD2 -0.1776  0.2222 -0.1849  0.2034 -0.0871  0.5520
PROT LT 0.4829  0.0004 -(3.0023  0.9875 -0.7943  0.0001
LIGHT (0.2200  0.1288 -0.0421  0.7739 -0.2808  0.0506

correlated: if the minor road ADT is high, there will tend to be lighting. At the signalized
intersections, 80% of which have lighting (see Table 7), there is no correlation with minor road
ADT. On the three-legged and four-legged intersections, LIGHT and STATE are positively
correlated. As noted, Michigan tends to be less rural and to have more minor road ADT, and hence
more lighting. But LIGHT negatively correlates with STATE on signalized intersections, an

indication that California signalized intersections are more likely to have lighting.

Correlations Between Intersection Variables

Tables 18, 19, and 20 show correlations between pairs of intersection variables within the three data
sets. Only those correlations are shown for which P-values are less than 0.10. In addition, rather
than exhibit all peak tuming percentage, channelization, alignment, and sight distance variables, we
only show representative variables from each of these classes.

Items of special note In these tables that have not already been mentioned include the following:

*  Wider medians, left-turn fanes on the major road, and fewer major road driveways tend to
go together in the three-legged and four-legged samples.
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TABLE 18. Correlations Between Intersection Variables in the Three-Legged Sample

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES
ADTI LTLNL, RTLNI, RSDI, VI-1, VEI-1 PK%TRUCK, PK%LEFT2
ADT2 PK%TURN, PK%LEFT, PK%LEFT], NODRWY!, | PK%TRUCK, PK%THRUI,
LTLN2, RTLN2, LIGHT, STATE MEDWIDTH!, SPDI
STATE ADT2, NODRWY1, HAL, LIGHT HAZRAT, LTLNI, RTLNI,
CA=0,M[=1 MEDWIDTHI, ABSGRDI, SPDI,
SPD2
PK%TRUCK MEDWIDTH1, HAU, SPDI ADTI, ADT2, NODRWY I, RSD1,
RSDR2, HEI-1, Vi-1, VEI-1, LIGHT
PK%TURN ADT2, PK%LEFT, PK%LEFT!, LTLN2, RTLN2, | PK%THRU!
LIGHT
SPDI PKO%TRUCK, HAZRAT, LTLN1, RTLN, ADT2, NODRWY I, RSD1, RSDR2,
MEDWIDTH], SPD2 HI-1, HEI-1, VI-1, VEI-1, VCEI-1,
LIGHT, STATE
$PD2 HAZRAT, LTLNI, RTLN], MEDWIDTH!, LIGHT, STATE
ABSGRDI, SPD!
HAZRAT LTLNI, HI-1, ABSGRD1, SPD1, SPD2 NODRWY 1, LIGHT, STATE
NODRWY 1 ADT2, RSDI, RSDR2, Hi-1, HEI-1, PK%TRUCK, HAZRAT, LTLNI,
VEL-1, LIGHT, STATE RTLN1, MEDWIDTHI, SPD|
MEDWIDTHI PK9%TRUCK, LTLNI, RTLN1, $PDI, SPD2 ADT2, NODRWY I, RSDI, Hi-1.
HEL-1. LIGHT
LTLNI ADTI, HAZRAT, RTLN1, MEDWIDTHI, SPD1, | NODRWY L, HI-1, HEI-1, VCI-1,
SPD2, STATE LIGHT
HAU PK%TRUCK, LIGHT, STATE RSD1, Hi-1, ABSGRDI
DEV RSD1, HEI-
RSDI ADTI, NODRWY1, DEV, HI-1, HEI-1, VI-1, PK%TRUCK, MEDWIDTH!, HAL.

Reciprocal Sight Distance

VEI-1, ABSGRD1, LIGHT

SFDI

HEI-1
Horizontal out to 800 ft

NODRWY 1, DEV, RSD1, RSDL2, RSDR2, HI-1,
VEI-1

PK%TRUCK, LTLNI, MEDWIDTHI,

QTN

arll

VEI-] ADTI1, NODRWY 1, RSD1, RSDR2, HI-1, HEI-1, PRUWTRUCK, SPDI
Vertical out to 800 ft Vi1-1, VCI-1, VCEI-1, ABSGRDI
ABSGRD1 HAZRAT, RTLN1, RSD1, RSDR2, HI-1, VI-1, HAU, STATE
VE[-1, VCEI-1, SPD2
LIGHT ADT2Z, PK%TURN, PK%LEFT, NODRWY I, PK%TRUCK, PK%THRUI,
No=0, Yes= 1 LTLNZ, 5AU, R8DI1, STATE HAZRAT, LTLN], MEDWIDTHI,
SPDI, SPE2
I =0305m
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TABLE 19. Correlations Between Intersection Variables in the Four-Legged Sample

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES
ADTI PK%THRUI, PK%LEFT2, MEDWIDTHI, SPDI PK%TRUCK, PK%TURN, PKY%LEFT,
PK%LEFTI1, PK%THRU2
ADT2 PK%TURN, PK%LEFT, PK%LEFT], PKSTHRU2, | PK%TRUCK, PK%THRUI, HAZRAT,
NODRWY I, RSDR2, HEL-1, LIGHT, STATE LTLN1, MEDWIDTH!, ABSGRDI, SPDI
STATE ADT2, PKY%TURN, PK%L. IFT, PK%LEFTI, PK%TRUCK, PK%THRUI, HAZRAT,
CA=0,MI=1 NODRWY 1, HEL-1, VCI-, VCEI-1, LIGHT LTLN{, RTLNI, MEDWIDTHI,
ABSGRDI, SPD1, SPD2
PK%TRUCK PK%THRUZ, LTLN1, RTLN!, RTLN2, SPDI ADTI, ADT2, PK%TURN, PK%LEFT,
PK%LEFTI, HAZRAT, NODRWY I, DEV,
RSD1, RSDL2, RSDR2, LIGHT, STATE
PK%TURN ADT?2, PK%LEFT, PK%LEFT!, PK%THRU2, ADTI, PK%TRUCK, PK%THRUI, LTLNI.
NODRWY 1, LIGHT, STATE RTLNI, RTLN2, MEDWIDTHI, SPD!
SPDI ADTI, PK%TRUCK, PK%THRUT, LTENI, RTLNI, | ADT2. PROGTURN, PK%LEFT, PKOALEFT!.
RTLN2, MEDWIDTH!, SPD2 NODRWY 1. R$DL2, RSDR2, HEI-1. LIGHT,
STATE
SPD2 LTLNJ, RTLNI, DEV, SPDI NODRWY 1, HEI-, V-1, VEI-I,
VCI-1, VCE}-1, STATE
HAZRAT LTLNI, DEV, RSDI, RSDL2, RSDR2, HI-1, ADT2, PK%TRUCK, PK%THRU2, RTLNI,
ABSGRDI RTLN2, STATE
NODRWY ADT2, PK%TURN, PK%LEFT, PK%LEFT!, RSDI, | PK%TRUCK, PKY%THRUL, LTLNI, RTLNL,
RSDL2, RSDRZ, HEI-1, LIGHT, STATE RTLN2, MEDWIDTHL, SPD1, SPD2
MEDWIDTHI ADTI, PK%THRUL, LTLNL, LTLN2, SPDI ADT2, PK%TURN PKY%LEFT, PKYLEFT1,
NODRWY I, LIGHT, STATE
LTLNI PK%TRUCK, HAZRAT, RTLN[, MEDWIDTH], ADT2, PK%TURN, PK%LEFT, PK%LEFTI,
SPDI, SPD2 NODRWY{, VCI-1, VCEI-1, LIGHT, STATE
HAU DEV, ABSGRD!
DEV HAZRAT, HAU, RSDR2, ABSGRD!, $PD2 PK%TRUCK, RTLNI, RTLN2

RSD, Reciprocal
Sight Distance

HAZRAT, NODRWY !, RSDL2, RSDR2, HI-1
ABSGRDI

PKUTRUCK., PK%THRUZ, RTLNI

HEI-1, Horizontal out | ADT2, NODRWYI, STATE SPDI, SPR2
to 800 ft
VEI-1, Vertical out to | RSDL2, VI-1, VCI-1, VCEI-1, ABSGRD! RTLN2, 5PD2

800 ft

ABSGRDI HAZRAT, HAU, DEV, RSD1, RSDL2, RSDR2, HI-1, | ADT2, PKOTHRUZ, RTLNI, RTLN2,
VEI-I STATE
LIGHT ADT?2. PK%TURN, PKY%LEFT, PK%LEFT!, PK%TRUCK, PK%THRU1T, LTLNI, RTLNI,
No=0, Yes=1 NODR_}VYI, STATE RTLNZ, MEDWIDTHIL, SPDI
1 ft=0.305m
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TABLE 20. Correlations Between Intersection Variables in the Signalized Sample

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES
ADTI PK%THRU1, RSD1, RSDLI1, RSD2, PROT_LT PK%TURN, PK%LEFT, PK%THRUZ,
LTLN2, STATE
ADT2 PK%TURN, PK%LEFT, PK%LEFT], NODRWYI, PK%THRUI, SPDI
RTLN2, HEI-1, HEICOM, STATE
STATE ADT2, PK%TURN, PK%LEFT, NODRWY i ADTI, HAZRAT, LTLNL.
CA=0,MI=1 MEDWIDTHI, HI-2, HEI-2,
PROT_LT. LIGHT
PK%TRUCK SPD2
PK%TURN ADT2, PK%LEFT, PKY%LEFTI, NODRWY 1, HEI-1, | ADT2, PK%THRUI, PK%THRUZ,
HEICOM, VEI-1, VEICOM, VCI-2, VCEI-2, SPDI
VCEICOM, ABSGRD!
SPDI RTLNI, RTLN2, SPD2 ADT2, PK%TURN, PK%LEFT,
NODRWY1, NODRWY2, RSD!,
RSDL1, RSDL2, HEI-1, HEICOM,
VCEI-1, LIGHT
SPD2 PK%TRUCK, PK%THRUZ, LTLNI, RTLN2, SPD1 PK%LEFT2, NODRWY1,
NODRWY2, RSD1, RSDLI, RSD2.
RSDL2. HEICOM, LIGHT
HAZRAT RSDI, VCEI-1 NODRWY2, RTLNI, VCI-1, STATE
NODRWY]1 ADT2, PK%TURN, PK%LEFT, NODRWY2, RSD2, PK%THRUI. HI-2, PROT LT, SPDI,
RSDL2, STATE SPD2
NODRWY2 PKYLEFT2, NODRWY !, RSDL2, LIGHT PKY%THRUZ, HAZRAT, SPD1, SPD2
MEDWIDTH]1 VI-2, VEI-2, VCI-2, VCEI-2, VCICOM, VCEICOM, RTLN2, HAU, STATE
PROT LT
LTLN1 LTLN2, PROT_LT, SPD2 HEI-1, VCI-1, STATE
HAU MEDWIDTH] HI-1, HICOM
DEV HI-1, HICOM

RSD1, Reciprocal
Sight Distance
along Major Road

ADTI, HAZRAT, RSDLI, RSD2, RSDLZ, HI-1,
HEI-1, HEICOM, VI-1, VEI-1, VCEI-I, ABSGRD1,
PROT_LT, VEI-1, ABSGRDI, LIGHT

RTLNI, SPDI, SPD2

RSD2, Recip. Sight
Dist along Minor Rd

ADTI1, PK%LEFT2, NODRWY I, RSDI, RSDLI, HI-2,
HE(-2, ABSGRD1i, ABSGRD2

PK%THRU2, SPD2

HEICOM
Herizontal out to
800 ft, All legs

ADT2, PK%TURN, PK%LEFT, PK%LEFTI, RSDI,
RSDL2, Hi-1, H1-2, HICOM, HEI-1, HEI-2, VEI-1,
VCEI-1, ABSGRDI

PR%THRUIL, SPDI, SPD2

VEICOM, Vertical
out to 800 ft,
All legs

PK%TURN, VI-i, VI-2, VICOM, VEI-1, VEI-2, VCI-1,
v(l-2, VCICOM, VCEI-1, VCEI-2, VCEICOM,
ABSGRDI, ABSGRD2

PR THRU

1t ft=0305m

88



TABLE 20. Correlations Between Intersection Variables in the Signalized Sample

(continued)

VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES
ABSGRD1 PK%TURN, PK%LEFT, PK%THRUL, MEDWIDTHI
Major Road RSD1, RSD2, RSDL2, HI-i,

HICOM, V-1, VICOM,

VEI-1, VEICOM, VCI-1,

VCEI-1, VCEICOM,

ABSGRD2
ABSGRD?2 RSD2, VI-2, VICOM, VEI-2,
Minor Road VEICOM, VCI-2, VCICOM,

VCEI-2, VCEICOM,

ABSGRD1
LIGHT PKY%LEFT2, NODRWY2, PKY%LEFTL, RTLNZ, SPD1,
No=0, Yes=1 RSDL1, RSDL2 SPD2, STATE
PROT LT ADTI, LTLNI, NODRWY1, STATE
No=0, Yes=1 MEDWIDTHI, RSD1,

RSDL1, HEI-2

Major road speeds tend to be higher when major road channelization is present and when
medians are wider in the three-legged and four-legged samples.

Major road speeds tend to be lower when minor road ADT is higher, when there are more
major road driveways, when sight distance is restricted, when lighting is present, or when
horizontal or vertical curves are present. This happens in all three data sets.

Lighting is more likely to be present when minor road ADT 1s high, when the peak turning
percentages are high, or when the number of major road dnveways 1s high. This applies to
the three-legged and four-legged samples.

At signalized intersections, protected left turns are more likely to occur in California than in
Michigan (17 out of 18 CA signalized intersections have protected lefi turns, whiie oniy 4
out of 31 MI signalized intersections do).

A couple of anomalies are evident from the tables. In Table 19, for the four-legged intersections,
a negative correlation exists between the presence of a lefi-turn lane on the major road and peak
turning percentages, including major road left turns. ‘When & higher fraction of the traffic is turning,
it is less likely that there is a turning lane. It may be that the motive for installing turning lanes is
more to prevent disruption of through traffic than to assist turning drivers. Another oddity, this time
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in Table 20 for signalized intersections, is the negative correlation between HAZRAT and VCI-1.
accompanied by a positive correlation between HAZRAT and VCEI-1. HAZRAT is measured out
to 250 feet (76 meters) as is VCI-1, while VCEI-1 is measured out to §00 feet (244 meters). A total
of 37 out of 49 signalized intersections have VCI equal to zero, while 25 out of 49 have VCEI equal
to zero. The two highest hazard ratings occur at intersections with VCI equal to zero, but with VCEI
equal to 6.0 and 3.46 (average VCEI is 0.952), and this contributes to the anomalous correlation.

Correlations for Single-Vehicle and Multiple-Vehicle Crashes at Signalized Intersections

For the signalized intersections, an attempt was made to analyze single-vehicle crashes and multiple-
vehicle crashes separately and to relate them to various flow patterns derived from the traffic data.
The variables TOTACCS and TOTACCM, representing a decompostition of TOTACC into single-
vehicle crashes and multiple-vehicle crashes, were compared with the intersection variables and with
the flow variables F, F,, F,, F,, PRODFADJ, PRODFOPP, and SUMF. The correlation coefficients
and P-values are shown in Table 21.

Conclusions that can be drawn from Table 21 with regards to the signalized sample are:

= Single-vehicle crashes show a slight negative correlation with major road ADT and major

road flows.

a Anltinla_ vehirle crachec are etranolv correlated with minar rnad flawe and with tha
ivi MLLLPLLJ Vard Bl vl L0 iy 4 P N R W, ) (SR S IO WIEY 1 AL LA LG YY LLLL 1l1dlivra L7 L1V ¥YY O CLEint ¥y LLAL LLEN,
interaction variable for adjacent legs, as well as with peak truck percentage and left-turn

percentage on the major road.

« HAZRAT’s correlation coefficient has the correct sign for single-vehicle crashes, but is
insignificant, as are the driveway variables.

e Horizontal alignment variables are negatively correlated with both kinds of crashes (one may
speculate that horizontal alignment causes drivers to exer! extra caution at signalized
intersections), and protected left turns reduce both kinds of crashes,

= Minor road vertical alignment contributes to single-vehicle crashes, and lighting reduces
these crashes significantiy.

The correlation of both kinds of crashes with the STATE variable has already been noted, 1.e.,
Michigan 1s overrepresented in crashes. However, since STATE has a strong negative correlation
with PROT LT, it is not clear which of these two variables has the dominant influence.

Turning Percentage Variables

Intersection crashes are naturally related to turming percentages at interscctions. However, sorting
out the relative importance of left turns versus right turns and turns from the major road versus the

an
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Multiple-Vehicle
Crashes Versus Signalized Intersection Variables

49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and M1, 1993-95
Highway TOTACCS TOTACCM
Variable Corr. P-value Corr. P-value
ADTl -0.1175 (0.4213 | 0.0380 (.7923
ADT2 0.1682 0.2480 (0.4545 0.0010
F, -0,1140 0.4365 0.0303 0.8305
F, -0.0722 0.6222 0.0809 0.5807
F, 0.1650 0.2571 (.3048 0.0332
F, 0.0584 0.6904 0.4461 0.0013
PRODFADJ 0.1018 0.4865 (0.3931 0.0052
PRODFOPP -0.0588 0.6882 0.1543 0.2899
SUMF -0.0201 0.8907 0.2349 0.1043
PK%TRUCK 0.1853 (3.2025 0.2558 0.0761
PK%TURN 0.1132 0.4386 0.2075 ¢.1526
PKY%LEFT 0.1188 0.4i61 0.2136 0,1406
PK%THRU1 -0.0793 0.5882 -0.2763 0.0546
PK%LEFT 1 0.1450 0.3203 0.3579 0.0116
PK%THRU2 -0.0374 0.7986 0.1664 0.2533
PK%LEFT2 -0.1490 0.3069 -0.3220 0.0240
HAZRAT 0.1001 0.4938 -0.0030 0.9838
NODRWY 0.1245 0.3940 0.4098 0.0035
NODRWY?2 -0.1 132_ 0.4386 0.0475 0.7459
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TABLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Multiple-Vehicle
Crashes Versus Signalized Intersection Variables (continued)
49 signalized 4-legged rural intersections, 2-lane by 2-lane roads, CA and MI, 1993-95

Highway TOTACCS TOTACCM
Variable Corr. P-value Corr. P-value
LTLN1 -0.0669 0.6478 B -0.2088 0.1499
RTLNI 0.0683 (.6410 -0.1314 0.3682
LTLN2 -0.0727 0.6194 -0.1764 0.2253
RTLN2 0.2169 0.1345 0.2232 0.1231
MEDWIDTHI -0.0724 0.6209 -0.0297 0.8395
HAU -0.0737 0.6149 0.0054 0.9704
DEV -0.0708 0.6289 -0.0508 0.7288
RSD1 -(0.1429 0.3275 -0.0965 0.5095
RSDL1 -0.1760 0.2265 -0.1938 0.1821
RSD2 -(.1453 0.3191 0.0341 0.8159
RSDL2 -0.2095 0.1485 -0.0293 0.8415
HI-1 -0.1041 0.47606 -0.2223 0.1248
HEI-1 -0.1815 0.2121 0.01356 09150
HI-2 -0.1812 0.2128 -0.2258 0.1187 |
HEI-2 -.1750 0.2292 -0.1577 0.2792
HICOM -0.1924 0.1853 -0.3184 0.0258
HEICOM -0.2382 (1.0993 -0.0401 0.7529
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TARBLE 21. Correlation Coefficients and P-Values for Single-Vehicle and Multiple-Vehicle

Crashes Versus Signalized Intersection Variables (continued)
fL1' v ‘_ 1qnp 1’\‘: ’) IQhP rhﬂdQ PA Aﬂ(‘i MI 993}-—95
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Highway TOTACCS TOTACCM
Variable Corr P-value | Con P-value
VI-1 -0.0295 0.8403 0.0735 0.6156
VEI-1 -0.0421 0.7741 0.2442 0.0908
VCI-1 -0.0302 0.8367 0.2148 (.1384
VCEI-1 -0.1738 0.2324 0.0808 0.5811
VI-2 0.3434 0.0157 0.0850 (0.5587
VEI-2 0.3269 0.0219 0.1026 0.4829
VCI-2 (.3238 0.0232 0.0578 0.6934
VCEI-2 (.3051 0.0331 0.1050 0.4729
VICOM (.2749 0.055% 0.1043 0.4759
VEICOM 0.2629 0.0680 0.1895 0.1922
VCICOM 0.2818 0.0498 0.1264 0.3867
VCEICOM 0.1924 0.1853 0.1315 0.3680
ABSGRDI -0.0753 0.6071 0.0487 (0.7398
ABSGRD2 $.1030 0.4812 -0.1068 0.4652
SPD1 0.0794 0.5875 -0.1435 (0.3253
SPD2 0.1588 0.2758 -0.0015 0.9919
PROT-LT -0.3996 0.0045 -0.2449 0.0899
LIGHT -0.4359 0.0017 -0.0672 0.6464
STATE 0.3356 0.0184 03387 0.0173
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minor road, as well as the direction of the effect in each case, is not easy since the tuming percentage
variables are strongly related to one another. In Tables 22 and 23, some of the relevant correlation

coefficients are presented.

Table 22 shows the correlation coefficients for the various turning percentages. It supports the con-
ventional wisdom, although not perfectly. PK%LEFT]1 correlates positively with PK%RIGHT2

TABLE 22. Correlation Coefficients and P-Values for Peak Turning Percentage Variables

Variable Pair 3-legged 4-legged signalized
Corr.  P-value Corr.  P-value Corr. P-value

PK%LEFT1

Vs. PK%THRU1 -0.8853  0.0001 -0.8964  0.0001 -0.7744  0.0001

PK%RIGHTT | 0.5588  0.0001 0.6519  0.0001 0.2101  0.1473
PK%LEFT2 -0.2891  0.0084 -0.1704  0.1584 -0.4724  0.0006
PK%THRU2 0.2642  0.0271 (0.1307  0.3709
PK%RIGHT2 { 0.2891  0.0084 | -0.0109  0.9290 0.3477  0.0144

PK%THRUI
VS, PK%RIGHT!1 |-0.8803  0.0001 -0.9205  0.0001 -0.7813  0.0001

PK%LEFT2 0.0165 0.882%9 0.0248  0.8385 0.0716  0.6248
PKY%THRUZ2 -0.2937  0.0136 -0.0995  0.4965
PK%RIGHT2 §-0.0165 0.8829 0.1621  0.1801 0.0491  0.7378

VS, PK%LEFT2 0.2673  0.0152 0.1077  0.3750 0.3554 0.0122
PK%THRU2 0.2686  0.0245 0.0248  0.8657

-

PK%RIGHT2 }-0.2673 0.0152 1-0.2670  0.0255 -0.4189  0.0027

PK%LEFT2
V8. PK%THRU2 -0.1966  0.1028 -0.6536  0.0001

PK%RIGHT2 }-1.0000 0.0001 -0.7874  0.0001 -0.2543  0.0779

PK%THRUZ2
Vs. PK%RIGHT?2 -0.4495  0.0001 -0.5657  0.0001
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(exception: the four-legged intersections where the correlation is negligible) and negatively with
PKY%LEFT2. Likewise, PK%RIGHT]1 correlates positively with PK%LEFT2 and negatively with
PK%RIGHT2. The positive correlations are expected since the corresponding flows are reversals
of one another. The negative correlations result at least in part from the fact that PK%LEFT?2 and
PK%RIGHT? are negatively correlated with one another. The four-legged interscctions are less
regular than the other two intersection classes. These correlations are, of course, based on rough
information since peak hours in the morning and the afternoon were selected in a crude manner and
there is no reason why flows should reverse in any precise way {(even if peak hours were selected
with great care).

Table 23, extracted in part from Tables 11, 12, and 13, shows the relationship between the crash
variables and the turning percentages for the three classes of intersections. What immediately strikes
the eye is that PK%LEFT] is positively correlated with all types of crashes at all types of
intersections, while PK%LEFT2 (or for that matter PK%THRUT1) is negatively correlated with all
types of crashes at all types of intersections. Since PK%LEFT2 = 100 - PK%THRU2 -
PK%RIGHT2, what is being said is that the sum of PK%THRU2 and PK%RIGHT?2 is positively
correlated with crashes. The last two columns of Table 23 confirm this. In general, both
PK%THRU? and PK%RIGHT? are positively correlated with crashes; in cases where one of them

TABLE 23. Correlation Coefficients and P-Values for Crashes Versus Peak Turning
Percentage Variables

PK%LEFTI  |PK%THRUI  |PK%RIGHTI  |[PK%LEFT2 PKY%THRUZ  |PK%RIGHT2
TOTACC
3-legged 0.2786, 0.0103 ]-0.2170,0.0474 | 0.1027,6.3525 |-0.2096, 0.0588 0.2096, 0.0588
4legged 0.3532.0.0023 1-0.3022,0.0099 | 0.2055,0.0833 |-0.1021,0.4003 | 0.1688,C.1625 [-0.0131,0.9144
signalized | 0.3557,0.0121 [-0.2693,0.0614 | 0.0652,0.6565 |-0.3230,0.0236 | ¢.1482,0.3096 | 0.1626. 0.2643
TOTACCI
3-legged 0.3098,0.0041 |-0.2819, C.0094 | 0.1867, 0.0890 |-0.1900, 0.0873 0.1900, 0.0873
4-legged 03794, 0.0010 |-0.3263, 6.0052 | 0.2235,0.0590 [-0.1088,0.3702 | 0.2013,0.0948 |-0.0275,0.8215
signalized | 0.3507,0.0135 |-0.2472,0.0868 | 0.0361,0.8056 |-0.3629,0.0104 | 0.1996,0.1692 | 0.1403, 0.3362
INJACC
3-legged 0.2612,0.0164 |-0.1745,0.1123 | 0.0448,0.686F {-0.1628,0.1440 0.1628, 0.1440
4-legged 0.2020. 0.0889 |-0.1457,0.2219 | 0.0712,0.5521 [-0.0883,0.4674 | 0.0813,0.5033 | 0.0293, 0.8098
signatized  § 0.1521,0.2967 1-0.0660,0.6524 |-0.0481,0.7427 |-0.2526,0.0800 | 0.1176,0.4210 | 0.1249,0.3925
INJACCI
3-legged 0.2884, 0.0078 |-0.2242, 0.0403 | 0.1056, 0.3389 |-0.1446, 0.1950 0.1446, 0.1950
4-legged 02190, 0.0645 |-0.1647, 0.1668 | 0.0886,0.4391 1-0.0961,0.4288 | 0.1081,0.3729 [ 0.0196,0.8723
signalized | 0.1450,0.3203 |-0.0086, 0.9533 |-0.1298,0.3742 {-0.3101,0.0301 | 0.1686,0.2468 | 0.1224.0.4022
TOTACCS |
signalized | 0.1450,0.3203 [-0.0793,0.5882 |-0.0205, 0.8887 |-0.1490,0.3069 |-0.0374,0.7986 | 0.2101,0.1473
TOTACCM
signalized | 0.3579,0.0116 |-0.2763, 0.0546 | 0.0739, 0.6140 |-0.3220,0.0240 | 0.1664,0.2533 | 0 1383 0.3434
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is not {and in those cases, the correlation is insignificant), the other one is still positively correlated
with crashes. Right turns from the minor road, including right furns on red, are certainly occasions

1 s D P | -~ stx v Frren i oy 4 1 1011:
for crashes. It might be argued that drivers turning left from the minor road are more vigilant than

drivers tumning right and are at less risk than drivers going through (between legs 3 and 4). Drivers
tumning left from the major road, at least at the three-legged and four-legged intersections, must be
concerned about both opposing traffic and traffic behind them, whereas drivers tuming left from a
Arncarding fn Tahle 272
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stop-controlled minor road have less risk from traffic behin
PK%LEFT?2 correlates negatively with PK%LEFTL. This suggests that the negative correlation of
crashes with PKY%LEFT2 may, in part, be a consequence of the positive correlation of crashes with

PK%LEFTI.

Crashes Versus ADT

Examination of correlation coefficients shows that ADT unsupported by other variables, especially
ADTI, plays a smaller role as one passes from three-legged to four-legged to signalized
intersections. To understand this phenomenon better, we examine grouped data in the manner of
Hauer et al. (1988). For each of the three data sets, intersections were divided mto four groups by

increasing major road ADT with an effort to equalize the number of crashes in each group to the

_______________ Tt TR AROAADIT TV I AT PO A

extent possible. Likewise, intersections were divided into four groups by 1ncreasing minor road
ADT with roughly equal crash counts in each group. Then, 16 cells were defined by means of the
grouping. In each cell, the number of intersections was counted, along with the number of crashes
(TOTACC) at its intersections during 1993-1995 and the ratio (the average number of crashes per
intersection). The numbers obtained are shown in Tables 24, 25, and 26. In addition, marginal
counts were made for the major road ADT groups and the minor road ADT groups of the same
variables (number of intersections, number of crashes, and average number of crashes per
intersection).

Tt is evident from the tables that some cells were empty or sparsely occupied. For example, in Table
24, there are no intersections in the highest quartile for major road ADT and the second highest
quartile for minor road ADT. There are also two empty cells in Table 25. If the cells were uniformtiy
occupied, the average number in each cell would be 84/16 = 5.25, 72/16 = 4.5, and 49/16 = 3.1 1n
Tables 24, 25, and 26, respectively.

In Figures 5, 7, and 9, the marginal distributions with respect to major road ADT are plotted, and in
Figures 6, 8, and 10, those with respect to minor road ADT are plotted. The horizontal variable in
each case is the median ADT of the group, and the vertical variabie is the average number of crashes
per intersection in the group. The number of crashes per intersection generally appears to increase
with increasing minor road ADT, with allowances made for noise due to the smallness of the sample
sizes. The number of crashes per intersection versus major road ADT shows a similar but more
erratic trend, except for the signalized intersections (Figure 9). The plot for the latter shows very
little change in the crashes per intersection as major road ADT is varied. Note the scale.
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TABLE 24. Crashes Versus Grouped Major and Minor Road ADT, Three-Legged Sample
3-legged, 4-lanc by 2-lane, stop-controlled rural intersections, CA and M1, 1993-95

No. of Intersections
No. of Crashes A D T E
Crashes/Intersection  {| 5 36710 | 1191710 | 15,168t | 1737910
11,916 15,167 17,378 33,058
15-250 22 5 2 0 35
A 18 21 7 33 79
0.82 4,20 3.50 5.50 2.26
D 251 - 820 11 6 1 7 25
30 20 6 31 87
2.73 3.33 6.00 4.43 3.48
T 821.-1,270 6 4 3 0 13
23 19 33 73
3.83 4.75 11.00 5.77
2 1,271 - 3,001 2 4 2 3 11
9 29 23 24 83
4.50 7.25 11.30 8.00 773
41 19 8 16 84
20 g9 69 88 326
1.95 4.68 8.63 5.50 3.88

3-Legged, 4-Lang by 2-Lane, Stop-Confrofled Rural Intersections,
CA & M{, 1993-85
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FIGURE 5. Crashes Versus Major Road ADT, Three-Legged Sample
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No. of Crashas per Intersackon

3-Legged, 4-Lane by 2-Lane, Stop-Conirofied Rural {ntersactions,
CA & MI, 198395
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FIGURE 6. Crashes Versus Minor Road ADT, Three-Legged Sample

LE 25, Crashes Versus Grouped Major and Minor Road ADT, Four-Legged Sample
4-legged, 4-lane by 2-lane, stop-controlled rural intersections, CA and M1, 1993-95

No. of Intersections
Nao. of Crashes A D T i
Crashes/Intersection i 335015 | 7685t | 12,0010 | 19,333 t0
7,684 12,000 19,332 73,000
21 - 340 9 15 4 6 34
21 36 17 24 98
A 233 2.40 425 4.00 2.88
341 - 800 3 8 6 4 21
6 31 44 17 98
D 2.00 3.88 7.33 423 4.67
801 - 1,051 0 3 1 3 7
17 18 62 97
T 5.56 18.00 20.67 13.86
1,052 - 2,018 6 2 2 0 10
72 17 16 105
2 12.00 8.50 8.00 10,50
18 28 13 13 72
99 101 95 103 398
5.50 3.61 7.31 7.92 5.53
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4-Legged, 4-Lane by 2-Lane, Siop-Controiled Rural Intersections,
CA & Mi, 1993-95
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FIGURE 7. Crashes Versus Major Road ADT, Four-Legged Sample

4-Legged, 4-Lane by 2-Lane, Stop-Controlied Rural Intarsections,
CA & M!, 1993-95
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FIGURE 8. Crashes Versus Minor Road ADT, Four-Legged Sample
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TABLE 26. Crashes Versus Grouped Major and Minor Road ADT, Signalized Sampie
Signalized, 2-lane by 2-lane, 4-legged rural intersections, CA and MI, 1993-95

No. of Intersections i
No. of Crashes A D T ]1
Crashes/Intersection | 4 64710 | 7,581t0 | 8,834t0 | 12,8261t0
7,580 8,833 12,825 25,133
A 940 - 3,003 4 3 1 7 15
70 65 17 98 2350
17.50 21.67 17.00 14,00 16.67
1)) 3,004 - 4,192 4 3 4 2 13
- 68 69 119 13 269
17.00 23.00 26.73 6.50 20.69
T 4,193 - 5,450 4 4 4 1 13
: 76 78 79 25 258
19.00 19.50 19.75 25.00 19.85
2 5,451 -12,478 1 1 3 3 8
31 30 60 119 240
31.00 30.00 20.00 39.67 30.00
13 11 12 13 49
245 242 275 255 1017
18.85 22.00 22.92 19.62 20.76

Signalized, 2-Lane by 2-Lane, 4-Legged Rural Intersections,
CA & MJ, 1983-95
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FIGURE 9. Crashes Versus Major Road ADT, Signalized Sample
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Signalized, 2-Lane by 2-Lane, 4-Legged Rural intersections,
CA & M!, 1593-85
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FIGURE 10. Crashes Versus Minor Road ADT, Signalized Sample

A.M. Versus P.M. Truck Percentages

The large amount of traffic movement data collected for this report permits a variety of special
studies. Table 27 is one illustrative example. For related items, see the appendix.

Table 27 indicates that the truck percentage is somewhat variable, and that in the morning, the truck
percentage is higher than in the evening (except for the Michigan signalized intersections). Miaou
et al. (1993) recommend that future studies include a time-of-day variable in estimating truck
percentages.

CONCLUSIONS

This chapter began with the development of variables for analysis and modeling. A variety of
variables were constructed relating to crash counts, ADT, peak-hour truck traffic, turning
percentages, geometry, channelization, alignments, and driveway counts. A variable for State was
defined, underscoring the possibility that in different regions and/or epochs, crash experience may
be quantitatively distinct despite similar values for intersection variables.
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TABLE 27. A.M. and P.M. Truck Percentages by State

3-Legged Intersections

California (60) Michigan (24) CA & MI (84)
AM%TRUCK 10.11 10.31 10.17
PM%TRUCK 9.19 6.98 8.56
PK%TRUCK 9.52 8.21 9.15
4-Legged Intersections
California (54) Michigan (18) CA & MI (72)
AM%TRUCK 13.76 8.94 12.56
PM%TRUCK 10.98 7.11 10.01
PK%TRUCK 11.98 7.83 10.95
Signalized Intersections
California (18) Michigan (31} CA & MI (49)
AM%TRUCK 8.34 9.70 9.20
PM%TRUCK 6.62 10.16 8.86
PK%TRUCK 7.36 9.89 8.96

Then, in Tables 5, 6, and 7, a summary of univariate statistics for these variables on the three data
sets was given. More crashes occur at signalized intersections than at four-legged intersections, and
more occur at four-legged than at three-legged intersections {cf. Table 8). Crashes tend to be more
severe in California (Table 9), but more frequent in Michigan (Table 10). While this may, in part,
be attributable to systematic differences in intersection variables between the two States (cf. Tables
15, 16, and 17), it is a reminder that the STATE variable may make an independent contribution.

The chapter also examines correlations between pairs of variables. This includes crashes versus
other variables (Tables 11, 12, 13, and 14), ADT and STATE versus other intersection variables
(Tables 15. 16. and 17). single-vehicle and multiple-vehicle crashes versus other signalized

LLaults Lo, 1y, alild 17y, Silpibm Vieliiuiy

intersection variables (Table 21), and turning percentage variables (Tables 22 and 23). The most
striking finding is the relevant insignificance of major road ADT in relation to the signalized

intersection crashes (see especially Figure 9). Another finding of importance is the negative

correlation between minor road left-turn percentage and crashes present for all three intersection

classes (Table 23). This, of course, implies a positive correlation between crashes and the sum of
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minor road through and right-turn percentages. Given the range of minor road lefi-turn percentages
within and among the three data sets (Tables 5, 6, and 7), this seems especially significant. Since
the hazards that a left-turning vehicle faces are greater than those that a right-turning vehicle faces,

the possibility exists that drivers making left turns from the minor road exercise more care than other

drivers approaching the intersection from a minor leg. Perhaps more relevant is the fact that since
left-turn percentages from the minor road correlate negatively with right-turn percentages from the

minor road, they also correlate negatively with lefi-tum percentages from the major road. As minor

road left turns increase, major road left turns decrease, and the net effect of the two opposite changes
1s to reduce crashes.

An issue that will affect the modeling is the multivariate relationships, especially the relationship
among crashes and pairs of highway variables. Thus, for the signalized intersections, the relative
insignificance of crashes versus major road ADT may indicate the effect of a third variable that
correlates with ADT. Again, for the signalized data, the effect of STATE on crash counts may be
confounded with that of other variables such as LIGHT, PRGT LT, HAZRAT, NODRWY,
MEDWIDTHI1, and even ADT1, all of which strongly correlate with STATE. The general strategy
will be to see which variable has the chief effect, in accordance with common sense, and, thereafter,
to determine which remaining variable, if any, has a significant effect on the residual, 1.€., the portion
of the crash count not predicted by the chief variable.



5. MODELING

Tn this chapter, we use the sample data to develop generalized linear models of the Poissen/negative
binomial type for the mean number of crashes per unit time at an intersection in terms of the
intersection variables discussed in earlier chapters. These models summarize the data collected. It
is hoped that they have predictive value for other data sets from the same intersection classes.

The chapter begins with a review of some of the theoretical aspects of model building and
measurement of goodness of fit. Thereafter, models are built for sach of the three classes of
intersections. This is done for each of the four crash variables —— TOTACC, TOTACCI, INJACC,
and INJACCL We study how these variables can be represented in terms of major and minor road
ADT, and then we add variables with the aim of improving the fit and discovering design elements
that might affect safety.

Separate models are also developed for TOTACCS and TOTACCM in the case of the signalized

intersections. These models use only the flows F,, F,, F,, and F, as explanatory variables.

Finally, the main models for TOTACCI are subjected to residual analysis to uncover systematic
shortcomings. :

THEORY
Modeling

We shall use a negative binomial model with mean a generalized linear function of intersection
variables. Thus,

w, = expB, + D5 x,8) (5.1)

where p; is the mean number of crashes to be expected at intersection number i in a given time
period; X, ..., Xin, are the values of the intersection variables at this intersection during that time
period (x;, = 1 corresponds to the intercept term); and By, ... B, are coefficients to be estimated by
the modeling. More sensitively, one might say that 1, is the grand mean of crashes o be expected
at a hypothetical population of intersections having the same values as intersection number 1 for the
intersection variabies considered. Variables not included in the model account for differences in the
expected number of crashes among members of this population, and these differences are described
by the term overdispersion. See Hauer et al. (1988). The variance (o;)* of the number of crashes in

this population under the model is:
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(6)* = n, + K@)

where K is the overdispersion parameter. The second term on the right side of this equation
represents the variation in means among different members of the population existing even when ail
intersections have the same value for the considered intersection variables. In principie, K could also
depend on these intersection variables, but for simplicity, that possibility is ignored.

Under the negative binomial model, the probability of y; crashes at intersection number i is given
by:

1
Ply,+=) 1
Py = B Ky 1%
! 1. 1+Kn,  1+Kp,
vt T & &

When K equals 0, the negative binomial reduces to the Poisson model. The larger the value of K,
the more variability there is in the data over and above that associated with the mean 1, .

The coefficients p; are estimated by maximizing the log-likelihood function L(B, K} for the negative
binomial distribution. The likelihood function is the probability that the values y,, ..., yy, would be
observed for intersections number 1 through N. If crash counts are independent at the different
intersections, the likelihood is:
N
[LY Poy

and application of the logarithm yields the log-likelihood function:

L(ELK} =
¥ . 1
Y, 1307 log(i <K - log(1+Ky) = yjlogm, = (- og(1+Kp) = log()]
(5.2}
Here, = (B, ...., B} is the vector of coefficients, y; is now taken to be the observed crash count at

intersection no. i, and y; is given by equation (5.1). The values of 5 and K that maximize the
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function L(B, K} in (5.2) are the estimated coefficient vector P and the estimated overdispersion
parameter K. The estimated value of i, obtained by substituting § and K for § and K in equation
(5.1)is denoted by y,. For convenience, the same letters wiil often be used for both the parameters

and their estimated values, i.e., carets (*) will be omitted in references to f and K.

P-Values and Goodness of Fit

The modeling of the data in this study was done using SAS and LIMDEP software. Along with
approximate maximum likelihood estimates for the regression coefficients, these software packages
yield estimates of the standard error for each coefficient. Frorn these, P-values can be computed for
the null hypothesis that the trne value of some regression coefficient 1s zero. The z-score of the
estimated coefficient is the estimated coefficient minus zero, divided by the estimated standard error.
The P-value is the probability that a normal random variable has an absolute value larger than the
z-score obtained. If the P-value 1s small, we have good evidence that the corresponding variable is
significant, that the difference between the coetficient estimate and zero arises not from chance, but
from a systematic effect. Even if the P-value is large, the parameter estimate has some value since
the null hypothesis that the parameter is zero is a somewhat arbitrary starting point and the estimate
obtained is the one dictated by the data. A large P-value lowers our confidence in the estimate and
indicates that even if the basic model form is correct, the true coefficient may be quite different from
the one estimated. One may expect the true coefficient to be within one or two estimated standard
errors of the estimated coefficient.

Goodness-of-fit measures associated with Poisson-type models have been introduced and reviewed
by Fridstrem et al. (1995) and Miaou (1996). For the modeling, we shall use three measures of

goodness-of-fit.

One measure is the ordinary R-squared, or coefficient of determination, used in linear regression
models:

12
y Ei 73 3
R = 1 - —-"—"“_—2- (33)
Ei (.Vf_y)
where

y, = observed crash count for intersection no. i,

y = average crash count for the sample, and

y; = estimated mean crash count for intersection no. 1.
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This measure is used because of its great familiarity. In case & model with no variables is used, i.¢e.,
in equation (5.1), u; = exp(B,) so that there is only a constant or intercept term in the linear

exnression. the maximum likelthood estimate for ﬂ can be shown 1o yieid

CARALSOIULL, LUL LG A L JES QIR ELW,

=y

and hence, R? equals zero. This model is called the zero model. At the other extreme, it might, in
principle, happen that

~
v, = P,
g S

for each i, and hence, R? equals 1. The value of R?is always less than or equal to 1 by definition.
It is greater than or equal to zero since maximum likelihood guarantees a result at least as good as
the zero model.

Fridstrem et al. (1995) have pointed out that in Poisson or negative binomial models, R* is very
unlikely to equal 1 since a Poisson-type variable takes a variety of values other than its mean, and
y, is unlikely to equal the estimated mean ¥, for each i in a sample of any appreciable size. They

have proposed taking a ratio of R? to its largest expected value P? under a best fit as a measure of

A form of this that they recommend for negative binomial models is the log-likelihood R-squared,
based on the deviance D™ of the model. The deviance of a model m is:

pm =2 W@ - L™

where

LY = Es:f ylog(y) -y, — tog(y )

is the log-likelihood that would be achieved if the model did give a perfect fit (u;=y, for each i, and
K = 0). Such a model is called the full or saturated model by Fridstrom et al. L™ is the log-

likelihood, as in (5.2), of the model under consideration (1;= ¥.). If the latter model is correct, Dm
is approximately a chi-squared random variable with degrees of freedom equal to the number N of
observations minus the number of parameters. The number of parameters is (p + 1}, whete p 15 the

mhar Af avnlamatary voariahlae in the ma
jluillubl [ b&,t_}laljﬂlul} vailaulvwo 1kl LL\./ LI

overdispersion parameter.



Fridstram et al. propose the following measures:

Dm
R, =1 (N'pe_l) (5.4)
D
N -2
b
N - (5.5)
Pl=1-¢ DO"’)
N -2
2
R? _ R, (5.6)
PD T TS
P.D

Here D’ is the deviance of a model with only two parameters — the constant term (intercept) and
the overdispersion parameter; p is the number of parameters of the model m under consideration (not
including the overdispersion parameter in the model); and D™ is the expected value of the deviance
in the case where a Poisson model with the same means vy, as the model m is the correct one.
Roughly speaking, R;," indicates how much explanatory power results from adding the highway
characteristics and R,y represents this as a fraction of the highest possible expected explanatory
power of any model with the same means as m.

A third measure of goodness-of-fit, proposed by Miaocu (1996), is based explicitly on the
overdispersion parameter:
K

2
Re=1 - —— (5.7)

max

Here, K is the overdispersion parameter estimated in the rodel, and K, is the overdispersion
parameter estimated in the zero model. Based on simulations, Miaou concluded that this measure
shows promise. It is simple to calculate, it yields a value between ¢ and 1, it has the “proportionate
increase” property (Miaou proposes as a criterion that independent variables of equal importance,
when added to a model, increase the value of the measure by the same absolute amount regardless
of the order in which they are added), and it is independent of the choice of intercept term in the
model.



Model Building

Adopting Miaou’s parameter as a measure of goodness-of-fit is equivalent to taking the over-
dispersion parameter as such a measure. A smaller overdispersion parameter signiftes a better fit.
Such improvement may occur because explanatory variables have been discovered or because the
number of independent variables is large relative to the sample size.

Alkaike has proposed a criterion for judoing models, and a corrected version of this, applicable to
small samples, has been developed by Hurvich and Tsai. See Miaou (1996, Chapter 4) for a
discussion. This statistic, in a form relevant to negative binomial models, is:

20+ Dip *+2) 55)
N -p -2 o

CAIC,, = -2L(B,E) + 2(p + 1) +

where N is the sample size and p is the number of parameters in the model (excluding the
overdispersion parameter). Models with smaller values of CAIC,; are deemed to be better fits. This
measure involves a trade-off between increased probability and a penalty for adding parameters on
small data sets. If N = o, the last term is dropped and the uncorrected Akaike criterion results. Even
without the last term, the criterion includes a penalty in the second term for adding parameters.

The model building described in subsequent sections of this chapter 1s guided by certain principles.
Intersection variables of known importance, namely ADT1 and ADT2, should be included in the
model. Other variables with understandable interpretations, i.e., those presented in the previous
chapter {(some of which were developed in the course of the modeling), are added to the model
provided they satisfy some combination of the criteria below:

° Engineering and intuitive judgments should be able to confirm the validity and practicality
of the sign and rough magnitude of the estimated coeflicient of each variable.

M1oNE Vaitanles tnat measur

e Examination of residuals y, - v, under a predecessor model not including the variable should
indicate that the variable is strongly correlated with the residual.

° Inclusion of the variable should lead to reductions of the overdispersion parameter and
CAIC,4, increases in the R-squared values, and respectable P-values for the estimated
coefficient of the variable to the extent possible.

These criteria are guidelines rather than precise and strict requirements, since model-building 1s an
art rather than a science.
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MODELS FOR THREE-LEGGED INTERSECTIONS

Tables 28, 29, 30, and 31 show negative binomial models of crashes in terms of intersection
variables for the three-legged intersections.

TABLE 28. Negative Binomial Models {or Crashes per Year {TOTACC), Three-Legged
Intersections
Bstimated regression coefficients (estimated standard error and P-value in parentheses).

to 250 ft, major road

Variables ADT only Main Model Variant
Intercept -12.9243 -12.2196 ~12.2577

(2.3682, 0.0001) (2.3575, 6.0001) (2.3626, 0.0001)
Log of ADT1 1.1989 1.1479 1.1778

(0.2477, 0.0001) (0.2527, 0.0001) {0.2517, 0.0001)
Log of ADT?2 0.3027 0.2624 $.2034

(0.0892, 0.0007) (0.08606, 0.0024) (0.1032, 0.0487)
MEDWIDTHI1 -0.0546 -0.0551
(in feet), major road (0.0249, 6.0285) (0.0246, 0.0254)
NODRWY1, 0.0391 0.0414
driveways (0.0239, 0.1023} {0.0245, 0.0912)

PK%LEFT1 0.0544

major road (0.0471, 0.2479)

N, p 84,3 84,5 84, 6

K 0.5256 (0.1366, 0.0001) | 0.3893 (0.1160, 0.0808) | 0.3658 (0.1095,0.0008)
R 6.5158 0.6413 0.6630

R? 0.2294 8.4351 0.4473

R:, P} 0.1821, 0.5628 0.2247, 5.5589 0.2275, 0.5524

R, $.3237 0.4021 0.4119

CAIC; 381.930 373.887 373.742

1 ft=0.305m

Table 28 indicates that the regression coefficient for (the log of) major road ADT 1s about four to
five times that for minor road ADT. Among the next most significant variables, as measured by
residuals after use of the ADT-only model, are NODRWY, MEDWIDTH]I, and SPD1. A second
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TABLE 29. Negative Binomial Models for Crashes per Year (TOTACCT), Three-Legged
Intersections
Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only Main Model | Variant1 Yariant 2 Variant 3
Intercept -16.1636 -15.4661 -16.6179 -15.7008 -13.6339

(3.4655, 0.0001) | (3.4685,0.0001) | (3.3126,6.0001) | (3.3955,0.0001) | (3.0516.0.0001)
Log 1.5023 1.4331 1.6117 1.4962 1.1954
of ADT1 (0.3507, 0.0001) | (0.3608, 0.0601) (0.3541, 0.0001) | (0.3530,0.0001) | (0.3109, 0.6001)
Log 0.2904 0.2686 0.1276 0.1801 0.2646
of ADT2 (0.1001, 0.0037) | (0.0988, 0.0065) | (0.1283,0.3199) | (0.1187,0.1294) | (0.1014, 0.6091)
MEDWIDTH1 -0.0612 -0.0687 -0.0607
fit (0.0360, 0.0888) | (0.0384, 0.0738) | (0.0340, 0.0739)
NODRWY1 0.0560 0.0552 0.6597 6.0903
major road (0.0289, 0.0525) | (0.0290, 0.0565) | (0.0283, 0.0330) (0.0266, 6.0007)
PK%TURN 0.0401

(0.0215, 0.0617)

PK%LEFTI, 0.0764
major road (0.0665, 0.2509)

VEI-1, vertical
out to 800 ft,

0.1180
(0.0700, 0.0919)

major road

HAU 0.0197

angle (0.9174, 0.2591)

N, p 84,3 84,5 84, 6 84,6 84,6

K 0.7332 0.5118 0.4195 0.4416 0.4416
(0.2068, 6.0004) | (0.171%,0.0029) | (0.1478, 0.0046) | (0.1513,0.0035) | (0.1642, 8.0072)

RZ 0.5139 0.6607 0.7072 0.7072

0.7219

R’ 0.1666 0.4452 0.4644 0.4757 0.4287

Rlz), P% 0.1731, 0.5322 0.2233, 0.5374 (.2491, 0.5356 0.2371, 0.5313 0.2278, 0.3196

RZ, 0.3253 0.4155 0.4652 0.4462 0.4384

CAIC 326.278 317.747 313.620 315.800 317.480

1ft=0305m




TABLE 30. Negative Binomial Models for Crashes per Year (INJACC), Three-Legged
Intersections
Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only Variant 1 Variant 2
Intercept -13.1685 -12.3246 -11.9061

(3.0319, 0.6001) (2.8076, 6.0001) (2.6937,0 .0001)
Log of ADT1 1.2028 1.1436 0.9526

{0.3082, 0.6001) {0.2763, 0.0001) (0.2843, 0.0008)
Log of ADT2 0.1925 0.1357 0.1499

(0.0931, 0.0388) (0.1029, 0.1872) (6.0916, 0.1018)
HAU 0.0230 0.0289
angle {0.0131, 6.0790) (0.0105, 0.0061)

NODRWY1, driveways
out to 250 ft, major road

0.0481
(0.0262, 0.0664)

ABSGRD1, average
grade, major road

0.1838
(0.1130, 0.1038)

N, p 84,3 84,4 84,6

K 0.5649 (0.2032, 0.0055) 0.3787 (0.1792, 0.0346) | §.2588 (0.1848, 0.1613)
Ry 0.4535 0.6336 0.7494

R? 0.1400 3.3755 0.4505

R, P} ¢.1437, 9.4039 6.1841, 0.3966 0.2036, 0.3837

R 0.3558 0.4644 0.5306

CAICy 274,653 269.275 268.081

1 f£=0305m

tier of significant variables includes PK%TRUCK and LTLNI. All of these variabies correlate with
NODRWY1 and MEDWIDTH]1 (see Table 18), and when the latter two variables are added, the
others become much less significant. However, it is also true that NODRWY1 and MEDWIDTHI
correlate strongly with each other (correlation coefficient -0.37654 and P-value 0.0004).
Nonetheless, we keep them both because they seem to have separate effects in the main model of
Table 28. When we consider residuals for the main model, the angie variables DEV and HAU show
positive correlation, as do turning percentage variables. If we add an angle variable and a turning
percentage variable to the model, the overdispersion parameter K reduces to about 0.29, but the P-
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TABLE 31. Negative Binomial Models for Crashes per Year (INJACCI), Three-Legged
Intersections
Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only Variant 1 Variant 2
Intercept -14.6858 -13.9216 -12.4996
(4.0902, 0.0004) (3.7706, 0.0003) (3.5376, 8.0004)
Log of ADT1 1.3145 1.2616 1.0701
(0.4202, 0.00618) {0.3810, .0009) (0.3691, 0.0037)
Log of ADT2 0.2179 0.1629 0.1657
{0.1076, 0.0429) (0.1097, 6.1373) (0.1019, 0.1038)
HAU 0.0253 0.0319
angle {0.0205, 0.2179) (0.0138, 0.0205)
NODRWY1 driveways 0.0487
out to 250 ft, major rd (0.0302, 0.1068)
VEI-1 vertical out to 0.1555
800 ft (0.1075, 0.1479)
N, p 84,3 84,4 84,6
K 0.7219 (0.2846, .0112) 0.4857 (0.2401, 0.0431) | 0.3295 (0.2723, 9.2263)
RZ 0.4725 0.6451 0.7592
R’ 0.1470 0.3674 0.4119
RE, PJ 0.1375, 0.3848 0.1786, 0.3816 0.2084, 0.3774
Rip 0.3573 0.4680 0.5522
CAIC; 240.718 235.734 233.492
1 ft=0305m

values for the angle variable range from 0.30 to 0.39. We have retained only one variant model in
Table 28. Note that inclusion of PK%LEFT1 in the variant reduces the coefficient of the log of
ADT?2, not unexpectedly, since these variables are correlated.

In Table 29, similar models are shown for TOTACCI. With crashes restricted to those that are
intersection-related, the effect of ADT1 becomes stronger. Two variant models show the slightly
different effects of two turning percentage variables: one has smaller P-values and a larger R?, the
other has smaller CAIC,; and the other two R-squared measures are larger; they give differing
magnitudes to the minor road coefficient. A third variant shows that vertical alignment VEI-1 and
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the angle variable HAU in a suitable combination, but not without each other, have some explanatory
value in place of MEDWIDTHI.

When we tumn to serious crashes (INJACC and INJACCI) in Tables 30 and 31, the importance of
ADT1 relative to ADT2 continues to increase. In addition, MEDWIDTHI ceases to be significant
and HAU becomes an important variable. Recall from Figures 2 and 3 that the sign of HAU 1s
positive when a driver turning from the major road across tratfic need oniy turn through a small
angle. According to these models, this increases crashes. This suggests that perhaps the more
relevant movement is turning from the minor road. A driver turning right from the minor road may
have the illusion of easy access, but inadequate visibility for traffic on the major road traveling in
the same direction, while a driver tuming left will have poor visibility of the traffic that must be
crossed. Only 17% of the three-legged intersections had HAU different from zero {cf. Table 5), and
the ones with HAU higher than zero had more injury crashes than average and the ones with HAU
lower than zero had fewer crashes. Recall from Table 11 that HAU has a strong positive correlation
with all crash types. With MEDWIDTH]1 removed and HAU added, NODRWY1 and one of the two
vertical alignment variables VEI-1 or ABSGRDI also contribute to injury crashes in the other
models shown in Tables 30 and 31.

Variables not included in these models, such as STATE, sight distances, and HEI-1, had very
insignificant P-values after inclusion of the variables shown in the tables.

The three-legged models have the following general features:

o TOTACC and TOTACCI models are similar, INJACC and INJACCI models arc similar.
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° For TOTACC and TOTACCI, MEDWIDTHI and turning percentage are influential.

. For INJACC and INJACCIL, the angle variable HAU and vertical alignment are influential,
and, to some extent, this is also true for TOTACCI.

ODELS FOR FOUR-LEGGED INTERSECTIONS

The models for the four-iegged intersections are exhibited in Tables 32, 33, and 34.

Table 32 shows models for TOTACC. In the absence of other variables, minor road ADT appears
to be more influential than major road ADT. When other variables are added, in particular, turning
and through percentages, ADT] becomes much more influential than ADT2. The variabies that
correlate most strongly with the residuals of the ADT-only model are RSDR2, PK%ILEFTI,
LTLN!S, and STATE, in order. However, when these variables are added to the models, the ones
that are most significant are PK%LEFT!1 and LTLNIS. Both of them correlate strongly with
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TABLE 32. Negative Binomial Models for Crashes per Year (TOTACC), Four-Legged
Intersections
Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only Main Medel | Variantl Variant 2 Variant 3

Intercept -6.9352 -9.46311 -16.1902 -10.9526 -9.7859
(23767, 0.0035) | (2.5991,0.9003) | (3.3126,0.0021) | (2.5907,0.0001} | (2.6032, 0.0002)

Log (.4683 0.8543 0.8873 1.0382 0.8894

of ADT1 (0.2330, 0.0444) | (0.2779, 0.0022) | (0.2653,0.0008) | (0.2870,0.0003) | (0.2873.0.0020)

Log 0.5135 $.3294 0.2924 0.2206 0.2845

of ADT?2 (0.0896, 0.0001) | (0.1255, 0.8087) | (0.1316,0.0263) | (0.1219,0.0704) | (6.1375, 0.0385)

PK%LEFTI1, 0.1100 0.2976 0.1054

major road (0.0412, 0.0076) | (6.1393, 0.0326) | (0.0372, 0.0046)

LTLNIS -0.4841 -0.6607 -0.5471

(Gor1) (0.2311, 0.0362) (0.2347, 0.0049) | (0.2445, 0.0252)

PK%LEFTI -0.0131

squared (0.0094, 0.1643)

PK%THRU2 0.0220

minor road {0.6107, 0.0391)

ABSGRD1 0.1553

major road (0.1123, 0.1666)

PK%TURN 0.0351

(0.0238, 0.1404)

100xRSDR2 2.284

(100x1/16) 1 ft=0305m (1.503, 0.1286)

N, p 72,3 72,5 72,5 70,7 72,6

K 0.6144 0.4578 0.48290 0.3682 0.4183
(0.1562, 0.0001} | (0.1307, 6.0005) | (0.1425, 6.0007) | (0.1124, 0.9011) | (0.1147, 0.0003)

R 0.3801 0.5381 0.5136 $.5953 0.5780

R’ 0.2565 0.3109 0.2520 0.4797 $.4494

R, P} 0.1080, 0.6011 | 0.1623,0.5858 | 0.2557, 0.5874 $6.1575, 0.5666 | 0.1635, 0.5792

RZ, 0.1796 0.2771 0.2557 0.2780 0.2822

CAIC 385.168 374.948 377.165 369.829 374.870
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TABLE 33. Negative Binomial Models for Crashes per Year (TOTACCI), Four-Legged
Intersections
Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables ADT only Main Model | Variant I Variant 2 Variznt 3
1
Intercept -7.2501 -11.1096 -10.9608 -11.8796 -13.28C3
(2.9094, 0.0130) | (3.3345, 0.0008) | (3.3257, 0.0010) | (3.2980, 0.0004) | (3.2833, 0.0001}
Log 0.4582 6.9299 0.9325 1.0161 1.2160
of ADT1 (0.2844, 0.1071) | (0.3433,0.0067) | (0.3452, 0.0069) | (0.3382,0.0027) | (0.3434, 0.6604)
Log 0.5311 0.3536 0.3498 0.2866 0.2195
of ADT?2 (6.0996, 0.0001) | (0.1163, 0.0024) | (0.1300, 0.0071) | (0.1336, 0.0319) | (0.1279, 0.0862)
PK%LEFT1 0.1491 0.1427 0.3854 0.1396
major road {0.0586, 0.6116) | (0.0583,0.0144) | (6.1674, 0.0213) | {0.0540, 0.0097)
LTLNI1S -0.2891 -0.4890
(0 or 1) (0.2920, 0.3222) (6.2970. 0.0998)
PK%LEFT1 ~0.0172
squargd {20111, 0.1221)
PK%THRU2 0.0284
minor road (0.0145, 0.0511)
ABSGRI}M 0.1698
major road (0.1353, 0.2093)
N, p 72,3 72,4 72,5 72,5 70,7
K 0.8814 0.7096 0.6901 0.6548 0.5556
(0.2267, 0.0001) | (0.1906, 0.0002) | (8.1827, 0.0002) | (0.1779, 0.0002) | (0.1512, 0.0002)
RZ 0.3338 0.4637 0.4784 (.5051 0.5498
R? 0.2323 0.1587 6.1952 §.1646 4.3675
R;, P2 0.0814, 0.5802 | 0.1334,0.5715 | 0.1273,0.5646 | 0.1410, 0.5665 | 9.1275, 0.5470
Ri, 0.1403 0.2334 0.2255 0.2488 0.2332
CAIC, 350.887 341.404 342.541 340.135 337.88%




TABLE 34. Negative Binomial Models for Crashes per Year (INJACC and INJACCI),

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Four-Legged Intersections

Variables ADT-only Variant 1 ADT-only Variant 1
INJACC INJACC INJACCI INJACCE

Intercept -9.8454 -11.5296 -9.7977 -13.5576
(2.5675, 0.0001) (2.9908, 0.0001) (3.2819, 0.0028) {3.9998, 0.0008)

Log of ADT1 | 0.7224 0.9505 0.6735 0.9918
(0.2591, 0.0053) (0.3284, 0.0038) (0.3285, 0.0403) (0.4268, 0.0201)

Log of ADT2 | 0.4778 0.3237 0.5138 0.3310
(0.1401, 0.0007) | (0.1645,0.0491} | (0.1604, 0.0014) | (0.1894, 0.0805)

PKY%LEFT1 0.0994 0.1228

major road (0.0433, 0.0216) (0.0614, 0.0457)

SPD2 0.0339 $.0429

(in mph) (0.0179, 0.0577) (0.0240, 0.0740)

N,p 72,3 72,5 72,3 72,5

K 8.5741 $.4308 0.9671 0.7178
(6.1821, 0.0916) (0.1824, 0.6182) (0.2899, 0.0009) {6.2716, 0.0082)

RZ 0.4218 0.5662 .3449 0.5138

R? 0.2445 0.3565 0.1987 0.3237

R}, P} 0.1197, 0.4817 | 0.1550, 6.4654 | 0.0834,0.4812 | 0.1214, 0.4680

R 0.2485 0.3331 0.1734 0.2593

CAIC 294.271 289.919 275.196 276.302

1 mph = 1.61 km/h

STATE, and STATE ceases to correlate significantly with the residual of this new model.
PK%LEFT1 and LTLNI1S correlate with each other as well, having a correlation coefficient of
-(3.2288 and a P-value of 0.0532, but both of them still seem to contribute fo the accident count.

The original major road lefi-turn lane vartable LTLN] takes values 0, 1, and 2, but only 4 out of 72
four-legged intersections (see table 6) have exactly one left-turn lane. One can model the left-turn
lanes on the major road using two regression coefficients (dividing the intersections into three
subclasses), but the quantity of data does not support this option. If one uses only the variable
LTLN1, one is adopting the bias that two turning lanes have double the safety effect of one. Our
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data suggest that two lefi-turning lanes are less safe than one: a model with coetficients for each case
gives a larger negative coefficient when there is one turning lane than when there are two. The

variabhle LTI N1S takes the value 1 when there is at least one lefi- hlrp:no fane on the p’m_}nr road.
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This, in effect, divides the intersections into two classes and avoids any assumptions about the
relative safety of intersections with one versus two left-turning lanes. (A similar approach is used
in the next section with the signalized data where PROT LT ind:icates at ieast one protected left turn
on the major road.) Variant 1 is a model that indicates a quadratic dependence of crash count on
PK%LEFT1. This model does not perform as well as the main model, but is present because
residuals for the main model correlate negatively with PK%LEFT1. We will discuss this issue
further in connection with Table 33. If LTLNI1S is added to the Varant | model of Table 32, the
quadratic term 1 PK%LEFT] becomes insignificant, with a P-value going to 0.3962.

The next most significant variable after those in the main model is PK%THRUZ. There are reasons
to be wary of adding two turning percentages because of the strong correlations among ADTI,
ADT2, PK%LEFT1, and PK%LEFT2 (see Tables 16 and 19). Also, two intersections must be
removed from the sample for which the minor legs had no traffic approaching the intersection during
the peak-hour visits. However, if PK%THRU?2 is added, it is significant. The design variable
ABSGRDI1 is also included in Variant 2.

Variant 3 in Table 32 1s obtained by using PK%TURN rather than PK%LEFT! and proceeding to
add significant variables. The average sight distance right from the minor road in feet, represented
here by its reciprocal multiplied by 100, is known to be correlated with all types of crashes (see
Table 12). Also, it has a strong correlation with the residuals from other models, but when it is
added to models, Variant 3 is the only model where its regression coefficient achieves a relatively
small P-value.

In Table 33, similar models are done for TOTACCI. The results are similar except that LTLN1S
is less significant. A version of Table 32, Variant 3, is not shown because the P-values of LTLNIS
and RSDR2 rise from 0.0252 and 0.1286 to 0.2594 and 0.3108, respectively.

We discern again a quadratic dependency on PK%ELEFTI (compare Variant 2 in Table 33 with
Variant 1 in Table 32). A quadratic of the form ax - bx? with a and b positive has its maximum when
x = a/2b. The two quadratic models have maximum contribution from PR%LEFT]1 at the values
0.2976/(2x0.0131) = 11.36 and 0.3854/(2x0.0172) = 11.20, respectively. This suggests that wher,
the left-turn percentage from the major road is less than 11%, crashes rise with increasing
percentage, but that when it is greater, crashes fall with increasing percentage. Among the 72
intersections upon which the model is based, 5 of them have PK%LEFT1 in excess of 11%.

Variant 1 in Table 33 includes LTLN1S, and yields improvement in K and R, but not in R}, or
CAIC,; or P-values. Likewise, Variant 3 in Table 33 mncludes the design variables LTLNI1S and
ABSGRD1. Without them, but with PK%LEFT] and PK%THRU?Z2 retained, in & model for
TOTACCI that we do not display, the overdispersion parameter K is larger (0.6261), R? is smaller
(0.1260), and R, is smaller (0.2261), but CAIC,; is also smaller (337.641). This is a reminder that
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the various criteria do not always have consistent trends. In addition, the behavior of CAIC,;,
suggests the possibility that a regime is being entered where overfitting occurs. Overfitting occurs
when random variation in a set of input variables is used to explain the random variation in a single
output variable. When the number of input variables is a significant fraction of the sample size,
some combination of the noises in the input variables may, by coincidence, approximate the
variation in the output variable without having predictive value.

Models for INJACC and INJACCI are shown ‘n Table 34. Turning percentages are significant for
these models and so is posted minor road speed SPD2, but other design variables fail to be.
PK%THRU? is marginally significant with a P-value of about 0.19, but it has been omitted, in part,
because the interpretation is unclear. Since SPD2 correlates negatively with STATE, one might
suspect that its influence is due to that source, but STATE itself is not significant in the presence of
the ADT variables and PK%LEFTTI.

The general features of the models for the four-legged intersections are:

o Turning percentage, along with major and minor road ADT, are influential for all crash
types.
° LTLN1S, which registers the presence of one or more left-turn lanes on the major road, 18

influential for TOTACC and marginally so for TOTACCIL.

° Grade and poor sight distance right from the minor road are marginally significant for
TOTACC and TOTACCL
e High minor road posted speed appears 1o contribute to serious crashes.

MODELS FOR THE SIGNALIZED INTERSECTIONS

Negative Binemial Models

The signalized intersections present special difficulties As shown in Table 26 and Figure 9, at first
appearances, the dependence of crashes on major road ADT s negligible. Likewise, the correlation
coefficient between crashes and ADT]1 is insignificant in Table 12. An ADT-only model for
TOTACC in terms of the logs of ADT1 and ADT2 actually assigns a negative (but insignificant)
regression coefficient to the log of ADTL.

Part of the insignificance perhaps stems from the small sample size — only 49 signalized
intersections. However, at signalized intersections, minor and major roads tend to have more equal
standing. If their standing is equal, their ADT’s should enter into any model symmetrically. For
example, the coefficient of ADT1 would be the same as that of ADT2 except for noise. We have
attempted to address that possibility by using the log of the product, log(ADT1xADT?2), as a variable
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in some of the signalized models below. At the same time, ADT by itself becomes less important.

Signalized intersections, one may argue, are less stereotypical than other rural intersections. On the
latter. the division berween maior road and minor road 15 more nmnmmced and the mmmo
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percentages on each fall into a narrower range. More important on the signalized intersections, onc
would judge, are the movements of the vehicles through the intersection. Turning percentages, left
and right, from all approaches and flows along each approach are likely to be more determinative

T ol T,
01 Crasiies.

There is also the issue of how to define the major road. Usually, and n this study, it is taken to be
the road with the larger ADT. But if there is significant turning along certain legs, legs of the same
road may have drastically different ADT. Most of the ADT may be on two adjacent legs, say legs
1 and 4, and very little on the other two adjacent legs, legs 2 and 3. See Figure 1. Usually, the major
road has a lower percentage of turning traffic than the minor road, but it is possible that a road with
less traffic would have virtually no turning traffic (all of it through), while the crossroad has much
more traffic and a significant amount of it is turning. In the data, an asymmetry can occur between
minor road turning traffic and major road turning traffic. This can be caused by failure of the
morning and evening peak hours to match up, by unusual travel hours to and from locations, or even

by alternative routes.

Despite these considerations, the models exhibited here take ADT to be primary, in part because of
its familiarity and acceptability to the engineering community and In part to permit comparisons with
other models that use ADT. Yet. it should be re(‘ngpwed that rural qwnahzed mtersections are a
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transitional class where variables other than ADT may prove to be more appropriate. This is
addressed in the subsection afier this one, where models of single and multiple-vehicle crashes in
terms of traffic flows are briefly investigated.

In Tables 35, 36, and 37 are shown negative binomial models for crashes on the signalized two-lane
by two-lane intersections. ADT-only models are omitted since when ADTI1 and ADT2 are
separated, ADT! is insignificant and has a coefficient of negative sign, and when they are united in
the form log(ADT1xADT?2), the model coefficients are somewhat unstable (SAS and LIMDEP give
rather different values for the regression coefficients, but the same log likeiihood, indicating that the
maximum occurs at a hard-to-find set of values on a Jarge relatively flat platean). When variables
that correlate well with the residuals to these models are added, the models settle down and the ADT

variables share in the significance.

Table 35 shows models for TOTACC. The existence of one or more protected left turns on the
major road at the signal is an influential variable. It correlates strongly with STATE, as noted
earlier, and it is possible that there is a combined effect here. A total of 17 out of 18 Califormia

signalized intersections had one or more protected left turns on the major road, while only 4 out of

31 Michigan signalized intersections did. Nonetheless, when PROT LT is added to the model

versus STATE, the former improves the model more than the latter, and the correlation between the

residual of a PROT LT model and the STATE variable is negligible.

—
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TABLE 35. Negative Binomial Models for Crashes per Year (YOTACC), Signalized
Intersections
Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables Main Model Variant 1 Variant 2 Variant 3
Intercept -6.953¢6 -6.1236 -6.3658 -5.4091
(2.7911, 0.9132) (2.5973, 0.0184) (3.3207, 0.0552) (3.0054, 0.0718)
Logof ADT1 §0.6199 0.6475
(0.2504, 0.0133) (0.3156, 0.0402)
Log of ADT2Z | 0.3948 0.2104
(0.1737, 6.0230) (£.2232, 0.3459)
Log of 0.4643 6.3914
ADTIXADT? {0.1483, 0.6017) (0.1732, 0.0238)
PROT_L.T -3.6754 -0.6110 -0.7181 -0.5980
0 =no, ! =yes | (0.1824, 0.0002) {01507, 3.0001) (6.1973, 0.00083) (0.1690, 0.0004)
PK%LEFT2 |-0.0142 -3.0134
minor road {0.5047, 0.0023) (0.0048, 0.0052)
PK%LEFT1 0.0220 0.6137
major road (0.0142, 0.1207) (6.0116, 0.2388)
VEICOM 0.1299 0.1243 0.1001 0.1044
vertical, all {0.0450, 6.0039) (6.0507, 0.0142) (0.0508, 0.0486) {0.0618, 0.0914)
legs
PK%TRUCK | 0.0315 0.0300 8.0353 0.0317
truck % (0.0143, 0.0275) (0.0141, 0.0331) (0.0175, 0.0441) (0.8167, 0.0573)
N, p 49,7 49, 6 49,7 49, 6
K 0.1161 0.11806 0.1353 0.1422
(0.9323, £.0063) (8.0317, 6.0002) (0.0341, 0.00031) (0.0375, 0.0002)
R 0.6450 0.6414 0.5916 0.5701
R? 0.5053 0.5208 0.5134 0.5172
R}, P2 0.1479, 0.6262 | ¢.1619,0.6349 | 0.1059, 0.6263 | 0.1123, 0.6351
Ri, 0.2362 $.2550 0.16%91 0.1768
CAIC, 358.508 356.471 363.937 363.044
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TABLE 36. Negative Binomial Models for Crashes per Year (TOTACCI), Signalized
Intersections
Estimated regression coefficients {estimated standard error and P-value in parentheses).

Variables Main Model Variant 1 Variant 2 Variant 3

Intercept -6.0841 -4.9564 -4.1075 -5.4581
(3.3865, 6.0724) (3.0779, 0.1674) (2.9461, 0.1633) (3.1937, 0.0874)

Log of ADT1 0.5951 0.5995
(0.2847, 0.6366) (0.2795, 0.0319)

Log of ADT2 {0.2935 0.2015
(0.1972, 0.1366) {0.1917, 0.2932)

Log of 0.3857 0.3320

ADT1XADT?2 (0.1788, 0.0309) (0.1719, 0.0534)

PROT LT -0.4708 -0.3822 -0.3025 -0.4041

0 =mno, 1 = yes | (0.2000, 0.0186) (0.1668, 6.9220) (6.1745, 0.0839) (0.1883, 0.0319)

PRY%LEFT2 -0.0165 -0.0153 -0.0160 -0.0177

minor road (0.0057, 0.0036) (0.0060, 0.0101) (0.0055, 0.0038) (0.0650, 0.0005)

VEICOM 0.1126 0.1033 0.0996 0.1114

vertical, (0.0365, 0.0020) (0.0416, 0.6130) (0.0382, 0.0091) {0.0326. 0.0006)

all legs

PK%TRUCK | 0.0289 0.6268 $.0234 0.0256

track % {0.0131, 0.0276) (0.0131, 0.0398) (0.8122, 0.0547) {0.0117, 0.6287)

NODRWY1 0.0347 0.0407

major road (6.0276, 0.1986) (0.0246, 0.0983)

N, p 49, 7 49,6 49,7 49, 8

K 9.1313 0.1354 £.1222 0.1145
{6.0392, 0.0008) (0.0390, 0.0005) (0.0374, 0.0011) (0.6491, 6.0043)

RZ 0.5521 0.5382 0.5834 0.60%4

R? 0.3650 0.3913 0.4563 0.4327

R}, P} 0.0944, .5854 | 0.1053,0.5951 | 0.1067,0.5853 | 0.1044, 0.5751

Rip $.1612 0.1776 0.1822 0.1816

CAIC; 342.266 340.672 340.831 341.551
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TABLE 37. Negative Binomial Models for Crashes per Year (INJACC, INJACCI),

Signalized Intersections

Estimated regression coefficients (estimated standard error and P-value in parentheses).

Variables INJACC INJACCI

Intercept -3.2562 -1.5475
(2.9932, 0.2767) (3.0298, 0.6095)

Log of 0.2358 0.1290

ADTIXADT?2 ¢ (0.1722,0.1707) (0.1757, 6.4627)

PROT LT -3.2543

J=no, ! =ves (0.1864, 0.1144)

PK%LEFT2Z {-6.0113 -.0149

minor road (0.0062, 0.0678) (€.0066, 0.0250)

VEICOM 0.0822 0.0686

vertical, (0.0551, 0.1358) (0.0692, 0.1358)

ail legs

PK%TRUCK § 0.0323 0.0282

truck % (0.8146, 0.0267) (0.0152, 0.0628)

N, p 49, 6 49,5

K 0.1630 0.1433
(6.0662, 0.0138) (0.0692, 0.0385)

R 0.4474 0.4829

R’ 0.3275 (.3488

R}, P} 0.0420, 0.4926 | 0.0665, 0.4565

Rip 0.6853 .1458

CAIC 285.287 265.687

Other significant variables shown in the main mode] of Table 35 include PK%TRUCK, VEICOM,
and PK%LEFT2.

Crashes rise at signalized intersections with a higher percentage of truck traffic and with more
vertical curvature out to 800 feet (244 meters) on any or all approaches. Trucks at a signal, as well
as having greater destructive capacity than passenger vehicles, take a long time to engage in turning,
maneuvers and block visibility during this time. In Table 13, almost all vertical variables correlate
positively with crashes, although few have significant P-values. The combination that is most
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significant in the modeling is VEICOM. VEICOM is an average change of grade per 100 feet (30.5
meters) along both major and minor roads for vertical curves at least partly within 800 feet (244
meters) of the intersection center. One may wonder why VEICOM is more significant than VICOM,
the comparable measure out to 250 feet (76 meters). Signalized intersections are rarely piaced
immediately beside vertical curves, but are often found fo be displaced from them by hundreds of
yards or meters. The mean, median, and standard deviation of VICOM are }.79, 1.2, and 0.28,
respectively, while those for VEICOM are 1.88, 1.43, and 0.27. The difference in medians, in
particular, shows that vertical curves partly within 800 feet (244 meters) of the intersection, bu. not
within 250 feet (76 meters), increase the average.

Crashes fall with increasing PK%LEFT2, the left-turn percentage on the minor road. PK%LEFT2
is the most significant of the turning percentage variables, but the others are also significant.
PK%LEFT2 is, of course, equivalent to (100 - PK%THRU2 -~ PK%RIGHT2), i.e., to the sum of
PK%THRU2 and PK%RIGHT?2, and each of the latter two variables correlates positively with
crashes (see Table 23). PK%LEFT?2 correlates negatively with PK%LEFT1 and thus the latter
should increase crashes. Variants 2 and 3 in Table 35 show that this is indeed the case, but that the
P-value rises. Note also that the P-value for the log of ADT2 becomes rather large in Vanant 2,
presumably due to the strong positive correlation between PK%LEFT1 and ADT2 (Table 17).

The difference between the Main Model in Table 35 and Varant | is in the use of
Log(ADTIxADT2) rather than the individual logs. In fact, Variant 1 gives a smaller value of
CAIC,; and a larger value of R%. The decrease in CAIC,; suggests that Variant 1 may be the
superior model: it has about the same explanatory value, but with fewer variables. In the Main
Moedel, we have elected to exhibit coefficients for ADT1 and ADT2 separately, partly to allow
comparison with other models. When they are combined in Variant 1, the new coefficient 1s
intermediate between the separate coefficients. The estimated difference in the two coefficients in
the Main Model is, of course, 0.6199 - 0.3948 = 0.2251. Using the estimated covariance matrix for
the model, we find that the estimated standard error of the estimated difference is [(0.2504) +
(0.1737)* - 2x0.0039226]"% = 0.2916. This gives a P-value of 0.4401 for testing the hypothesis that
the coefficients are different. In other words, the Main Model does not aliow us to reject the
hypothesis that the regression coefficients of the logs of ADT1 and ADT2 are the same.

The modeis for TOTACCI 1n Table 36 are stmular to those in Table 35, except that the P-value of
ADT?2 increases and the variable NODRWY 1 is marginally significant in Variant 2 and significant
in Variant 3. Variant 3 has an unacceptably high P-vaiue for ADT2. NODRWY?2 and the combined
variable NODRWYCOM, although positively correlated with crashes, do not achieve as good a P-
value as NODRWY 1. NODRWY1 also correlates positively with TOTACC, and in a TOTACC
model with the same variables as Variant 2 of Table 36, gives a P-value of 0.2270. Surprisingly,
its P-value in Variant 2 of Table 36, 0.1986, is lower, This is a surprise because TOTACCI attempts
to eliminate driveway crashes with no intersection involvement. We have omitted variant models
in which PK%LEFT]1 is used instead of PK%LEFT2. In one such model, the P-value of ADT2
jumps to 0.6481, although other variables behave well; in another model with LOG(ADTIxADT2),
ADT behaves well, but VEICOM and PK%LEFT! have P-values of 0.2402 and 0.3263,
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respectively.

For both TOTACC and TOTACCI, variables such as LIGHT and LTLNI correlate well with the
residuals of the models shown, LIGHT positively and L TLNI negatively. When these variables are
added to the models, they are also marginally significant. However, the values of CAIC,; do not

decrease, and concern about overfitting leads us to omit them.

In Table 37, we present one model each for INJACC and INJACCI. The coefficient of the log of
ADT?2 is quite insignificant because of large standard error. So we only exhibit models using
LOG(ADT1xADT2). Even with these, the P-value deteriorates substantially. In addition, VEICOM

becomes less significant and PROT LT attains, in the case of INJACCI, a P-value of 0.5666 (not
shown}.

The main features of the signalized intersection models are:

. ADT1 is insignificant for all crash types when ADT2 is present but without other variables.

e PK%TRUCK and the turning percentages, especially PK%LEFT2, are significant for all
crash types.

° The existence of one or more protected left turns on the major road, as well as major and

minor road vertical curves, is significant for TOTACC and TOTACCI, becoming less

2AiaERS AL (AL LSS oezy 1D D11l ARAL IV LS W, W LEAL: 1A 2 A4, UL

significant for INJACC and insignificant for INJACCI.

° NODRWY1 is marginally significant for TOTACC and TOTACCI, but not for serious
accidents.

° For TOTACC and TOTACCI models, in general, ADT1 becomes more significant as
variables are added, while ADT2 gets less significant, sharing its influence with tuming
percentage.

Flow Models

The signalized intersections, as noted, behave somewhat peculiarly with respect to ADT. This
suggests a more detailed analysis, making use of flows and crash types. Here we examine a few
models based on the decomposition of TOTACC into single-vehicle crashes and multiple-vehicie
crashes by the variables TOTACCS and TOTACCM. Although many single-vehicle crashes may
in fact be multiple-vehicle crashes in which other vehicles escape unscathed, we proceed as 1if this
decomposition is valid.

For single-vehicle crashes, one approach is to regard them as functions of incoming flows, with
minor and major legs treated on an equal footing and without interaction terms. An underlying
rationale is that single-vehicle crashes depend on same-direction traffic as well as intersection
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features other than traffic, such features including perhaps pedestrian traffic, intersection geometry,
roadside hazards, obstructions that limit sight distances, signal timing, ctc. Then one might expect

that the numhber of such cracheg 1g hr{'\i’\r\?’i’tr\hq] to some nower of the flow, Althouch such a view
L‘“‘- Rl ZAERLLIIALY W A I.l AAAAAA td A ES VA l‘bAkvubAA WALl A F LYY

is not particularly consistent with the ev1dence in Table 21, we pursue the approach and indicate the
outcome.

- o N i
I

A negative binomiai model with mean number of singie-vehicle crashes per unit time of the form

= Cx [(F7)° + {F)" + (FF + (F

is sought with variance equal to u + Ku’. The unknowns are the muitiplicative constant C, the
power a, and the overdispersion parameter K. For a given power a, LIMDEP or SAS will choose
the pair (C, K) to maximize the probability (or log-likelihood) of the observed numbers vy of single-
vehicle crashes given the observed values of Fi, F,, F;, and F,. The crude strategy we follow,
suggested by the measure R, is to vary a and choose the triple (C, a, K) that yields the smallest
value for K (and hence the largest for Rg).

When this is done, the resulting model is as follows:

— (exp "1-9218) % E(Fl}ﬁ‘ﬁl + (F2)0.01 + (Fs)ﬁ.ﬂ*} + (F‘t)ﬂ.ﬂl}

where
i is the mean number of single-vehicle crashes per year,

the intersection flows are F,, ¥, Fy, and F, in thousands of vehicles per day, and

the overdispersion parameter K = 0.4670.

The constant term -1.9218 has an estimated standard error of 0.1419 and a P-value of 0.0001, and

the nvm—dmpprmnn narameter 00,4670 has an estimated standard error of 0.1993 and a Povalue of

iRl P ix WO tiiiaiien stanaa AL L

0.0192. Because of the modeling technique, an estimated standard error for the power a = 0.01 is
not available.
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The power 0.01 is evidently quite small. Indeed, the so-called zero mode! s not substantially
different from the one above. Itis:

g = exp-1.6727

with overdispersion parameter K = 0.4674. Here the infercept ~1.6727 has an estimated standard
error of 0.1419 and a P-value of 0.0001, and the overdispersion parameter has a standard error of
0.1998 and a P-value 0f 0.0193. The overdispersion parameter of the zero model is only slightly
larger than that of the proposed single-vehicle crash model. Given the size of the standard errors
involved, this suggests that single-vehicle crashes are not appropriately estimated by this model
form.

Turning to the multiple-vehicle crashes, we look for a negative binomial model of the form

p o= C x [(F)AF) + (FYUF,)’ + (F)UF,) + (FYYF ) + p(F F,)° + p(F,F)]

for which there are six unknown parameters: C, a, b, p, ¢, and the overdispersion parameter K. The
first four terms represent interactions of adjacent flows and the last two represent interactions of
opposing tlows. Minor and major roads are represented symmeirically in this model form, but left
versus right distinctions are maintained since a need not be equal to b, and adjacent flow interactions
are not assumed to be of the same magnitude as opposite flow interactions, i.e., p need not be equal
to 1 nor are the powers a and b constrained in relation to the power c.

The modeling methodology empioyed here, similar to that for the singie-vehicle crash model, is to
fix the quadruple (a, b, ¢, p) and apply SAS or LIMDEP to yield a maximum likelihood model for
the observed number y of multiple-vehicle crashes given the observed flows F,, F,, F,, and F,. This
yields values for the pair (C, K). Then the values of the quadrupie (a, b, ¢, p) are varied in such a

way as to minimize K.

The resulting model is the following:
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D INTERSECTIONS

MULTIPLE-VEBICLE CRASH MODEL, SIGNALIZE

B = (exp-0.4420) x [(F,F)" + (FF)" + (F,F)* + (F,F)™ + 0.95]

where :
u is the mean number of multiple-vehicle crashes per year,

the intersection flows are F,, F,, Fy, and F, in thousands of vehicles per day, and

the overdispersion parameter K = 0.2936.

The constant term -0.4420 has an estimated standard error of 0.1015 and a P-value of 0.0001, and
the overdispersion parameter 0.2936 has an estimated standard error of 0.0696 and a P-value of
0.0001. Because of the modeling techniqgue, estimated standard errors for the powers a=b = (.3,
¢ =0, and p = 0.95 are not available.

These resuits indicate that the product of opposing flows, at least when summed over both
approaches, does not significantly contribute to the crash rate. The sum of the 0.3 powers of
adjacent flow products is the relevant variable, and a linear transformation is applied to it. If the
flow on any two opposite legs is zero, the mean number of multiple-vehicle crashes per year is
estimated to be exp(-0.4420)x(0.95) = 0.61. Perhaps the chief point of interest 1s that the powers
a and b turn out to be at least roughly equal, with values close to those in the models of Tables 35
and 36 (Varant 1). Note also that the overdispersion parameter for TOTACCM, 0.2936, is
significantly larger than those shown in the TOTACC models of Table 35.

Many additional ideas could be explored along the lines introduced here. In particular, in view of
Table 21, model forms that stress minor leg flows could be considered. Other crash decompositions
could be considered, including TOTACCI, INJACC, INJACCI, time of day, or crash type.

RESIDUAL ANALYSIS
For the three Main Models of TOTACCI, from Tables 29, 33, and 36, graphs of cumulative scaled

residuals versus explanatory variables are plotted in Figures 11 through 22. For an explanatory
variable X, a plot is made of J versus the quantity



E .V,-_"J?f ~
(iix; < J} — (5.9)
7, + K@)

called the cumulative scaled residual. The variable J runs through the set of values that the
explanatory variable x assumes on the data set. The terms in (5.9) are scaled residuals and should
each be approximately unbiased with mean square equal fo 1 if the model form and estimated ¥, and
K are essentially correct. However, if the sum depends in sorne regular way on the values of J, then
the model may have missed some systematic effects (e.g., quadratic dependency). 1f there is no
systematic effect and the terms are otherwise independent, the expected value of the sum is
approximately zero, and its standard deviation is approximately the square root of the number of
observations for which x < J. For the three samples V84 =9, v72 = 8.5, and V49 =7, and these
numbers are indications of the permissible order of magnitude of the sum. The cumulative scaled
residuals should represent the net distance traveled after each step ina random walk that ends at the
sum of the scaled residuals for the entire data set.

For the Main Models in Tables 29, 33, and 36, the overall surns of the scaled residuals are 5.7, -G.5,
and -0.2, respectively. Thus, the corresponding graphs should wander from a height of 0 to these

heights in a random manner.

Figures 11 through 14 refer to the Main Model for TOTACCI in Table 29 (three-legged
intersections). The explanatory variables are ADT1, ADT?2, MEDWIDTHI, and NODRWY1. The
graphs of scaled residuals versus each of these four variables exhibit regions of systematic trends.
This suggests that separate models might capture the crash counts better with variables restricted to

smaller ranges.

Figures 15, 16, and 17 refer to the Main Model for TOTACCI in Table 33 (four-legged inter-
sections). The explanatory variables are ADTI, ADT2, and PK9%LEFT1. Another variable,
LTLNIS, which indicates the presence of left-turn lanes on the major road, is marginally significant,
but is categorical in nature and hence does not lend itself to detailed residual analysis. In any case,
it is not included in the Main Model. Figures 16 and 17 indicate that there may be quadratic
dependence on ADT2 (Log of ADT2) and/or PK%LEFTL. Tabie 33 does include a model (Variant
2) with quadratic dependence on PK%LEFT2, which appears 1o be an improvement over the Main
Model according to the various R-squared measures. The horizontal outlier in F igure 15 is a four-
legged intersection with a major road ADT of 73,000. When it was removed from the sample and
modeling was done without it, there were small but insignificant changes to the estimated regressior
coefficients and the estimated overdispersion parameter. It was not found to be unduly influential.
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FIGURE 12. Cumulative Scaled Residual Versus ADT2 for Three-Legged Intersections,

TOTACCI Main Model of Table 29

The cumulative scaled residual varies from -4.5 to 7.9, ending at 5.7. It is positive for 65 out of
84 intersections. For low values of ADT2, the model underpredicts.
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FIGURE 13. Cumulative Scaled Residual Versus MEDWIDTH]1 for Three-Legged

Intersections, TOTACCI Main Model of Table 29

The cumulative scaled residual varies from -7.2 to 6.2, ending at 5.7. It is positive for 32 out of
84 intersections. On the eight intersections with median widths from 12 to 16 feet (3.7 to 4.9
meters), the model underpredicts on average.
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FIGURE 14. Cumulative Scaled Residual Versus NODRWY1 for Three-Legged
Intersections, TOTACCI Main Model of Table 20

The cumulative scaled residual varies from -3.1 to 10.9, ending at 5.7. It is positive for 69 out of

84 intersections. When there are few driveways, the model tends to underpredict crashes.
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FIGURF 16. Cumulative Scaled Residual Versas ADT2 for Four-Legged Intersections,

TOTACCI Main Model of Table 33

The cumulative scaled residual varies from -6.1 to 3.5, ending at -0.5. It is positive for 26 out of
72 intersections. There is some indication of quadratic dependence on ADT2 or Log of ADT2 to
describe overprediction at low values of ADT2 and underprediction at higher values.

136



20J(

15 +

(- I RS - LI T - R ]

20 = B 0O W
[=]
L
L
*
*

| * ARkhkkEARKk

.10 4+

-5 +

O o I -+ N U O I |

-20 4+

ﬂ_

|
| I
D 5 10

Py
L4

Peak Major Road Left Turn % {(PK%LEFTT)

NOTE: 29 observations hidden.

FIGURE 17, Cumulative Scaled Residual Versus PK%LEFT1 for Four-Legged
Intersections, TOTACCI Main Model of Table 33

The cumulative scaled residual varies from -8.4 to 2.6, ending at -0.5. It is positive for 12 out of 72
intersections. There is some indication of overprediction at lower turning percentages, followed by
underprediction at somewhat higher turning percentages. A guadratic model addresses this matter
in Variant 2 of Table 33, starting out with a smaller intercept and stezper slope, but with the slope
becoming smaller as PK%LEFT1 increases.
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FIGURE 18. Cumulative Scaled Residual Versus ADT1 for Signalized Intersections,
TOTACCI Main Mode] of Table 36

The cumulative scaled residual varies from -3.1 to 3.9, ending at -0.2, 1t is positive for 31 out of
49 intersections.
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The cumulative scaled residual varies from -5.4 to 4.2, ending at -0.2. It is positive for 29 out of
49 intersections.
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FIGURE 20. Cumulative Scaled Residual Versus PK%LEFT?2 for Signalized
Intersections, TOTACCI Main Model of Table 36

The cumulative scaled residual varies from -3.2 to 2.9, ending at -0.2. It is positive for 24 out of
49 intersections.
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FIGURE 21. Cumulative Scaled Residuat Versus VEICOM for Signalized Intersections,
TOTACCI Main Medel of Table 36

The cumulative scaled residual varies from -4.6 to 3.2, ending at -0.2. It is positive for 19 out of
49 intersections.
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FIGURE 22. Cumulative Scaled Residual Versus PK% TRUCK for Signalized
Intersections, TOTACCI Main Model of Table 36

The cumulative scaled residual varies from -3.4 to 2.0, ending at -0.2. It is positive for 27 out of
49 intersections.
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Cumulative residuals for the TOTACCI Main Model of Table 36 (signalized intersections) are
plotted in Figures 18 through 22. The explanatory variables are ADT1, ADT2, PROT LT,
PK%LEFT2, VEICOM, and PK%TRUCK. The variable PROT LT is not used in the residual
analysis since it is categorical. The figures show what appear {0 be random walks with no particular
systematic effects. Indeed, the fact that they stay relatively close to zero suggests that possibly
overfitting is occurring.

Table 38 shows the range of values for the cumulative scaled residuals of all variables in the
TOTACCI Main Models. The rangg is quite consistent with the square roots of the sample sizes.
For PROT LT, the sum of the scaled residuals over all signalized intersections without a protected
left turn is 0.45, so that the signalized models slightly underpredict crashes on intersections without
major road protected left turns. Since there are 28 signalized intersections without protected left
turns, the average scaled residual is 0.45/28 = 0.016. The overall cumulative sum being -0.2, 1t fol-

TABLE 38. Cumulative Scaled Residuals Versus Increasing Value of Intersection
Variables, TOTACCI Main Mecdels

Intersection Range of Cumulative
Vanable Scaled Residuzl
84 three-legged ADTI -7.2t0+10.2
intersections N
(Table 29 Main ADT2 -4.5t0 +7.9
Model) MEDWIDTH1 |-7.2 to +6.2
v84 =9 NODRWY1 3.1 to +10.9
72 four-legged ADT1 -45t0+5.2
intersections
(Table 33 Main ADT?2 -6.1to+3.5
Model) V72 = 8.5 | pK%LEFT! 8410 +2.6
ADTI1 3.1iw43.9
49 signalized ADTZ -5A410 +4.2
intersections PK%LEFT? 3.2 10 +2.9
(Table 35 Main
Model) VEICOM 4.6 10 +3.2
PX%TRUCK -3.4t0+2.0
VEY =17 PROT LT 0.2, +0.45
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lows that the sum of the scaled residuals on the intersections where major road protected left turns
are present is -0.65, for an average on the latter intersections of -0.65/21 = -0.031. Thus, the model
slightly overpredicts on the intersections that have major road protected left turns.

In summary,

° The three-legged Main Model for TOTACCI migat be improved by partitioning the
intersection variables into smailer ranees and developing models for cach range.

° The four-legged Main Model for TOTACCI might be improved by including quadratic
dependence on ADT2 or the log of ADT2 and/or PK%LEFTI.

° The signalized Main Model for TOTACCI has well-behaved residuals, possibly an indication
of overfitting.

In view of the relatively small sample sizes, the models all behave reasonably well.

A residual analysis was not done for the TOTACC modets, although it is believed that it would
yicld similar results.
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6. CONCLUSIONS

In this chapter, we exhibit the Main Models for TOTACC and 1 TOTACCI again. Then, we use these

models and the log-likelihood R* to decompose the variation in craohes into proportions due to
different variables. We also develop Accident Reduction Factors for the models. Finally, we review

and summarize ideas in this study.

THE MAIN MODELS

Three-Legged Intersections

1. Three-leeced rural intersections of a four-lane major road with stop-controlied two-lane minor
road. TOTACC Main Model (Table 28)

Negative Binomial Model with K = 0.389

§ = NUMBER OF YEARS x (ADTD)M'*® x (ADT2)*? x exp(-12.220)
x exp(-0.0546xMEDWIDTH! + 0.8391xNODRWYI)

where the variables are:

¢ = predicted mean number of crashes within 250 fect (76 meters) of the intersection
center

NUMBER OF YEARS

ADT! = average two-way major road traffic in vehicles per day
ADT2 = average two-way minor road traffic in vehicles per day
MEDWIDTH! = the major road median width in feet

NODRWY1 = the number of residential and commercial driveways on the major road
within 250 feet (76 meters) of the infersection center.

BTN E . “.-.
NOTE: A me tric version o

with -0.179x MEDWIDT

tal cing - 0.0546 MFDWIT)T 11 above
1,., where MEDWIDTH]1,, = the major road median width i meters.

an)
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1. Three-leseed rural intersections of a four-lane major road with stop-controlled two-lane minor
road, TOTACCI Main Mode] (Table 26)

Negative Binomial Model with K =0.512

ADTHY x (4DT2)%% x exp(-15.466)
HI + 0.0560xNODRWYI)

where the variables are:

¥ = predicted mean number of intersection-related crashes within 250 feet (76 meters)
of the intersection center

NUMBER OF YEARS

ADT] = average two-way major road traffic in vehicles per day
ADT?2 = average two-way minor road traffic in vehicles per day
MEDWIDTH1 = the major road median width in feet

NODRWY 1 = the number of residential and commercial driveways on the major road

within 250 feet {76 meters) of the intersection center.

NOTE: A metric version of this model 1s obtained by replacing - 0.0612xMEDWIDTH1 above
with -0.201x MEDWIDTHI{ , where MEDWIDTHI , = the major road median width in meters.



Four-Legged Intersections

I. Four-leeged rural intersections of a four-lane major road with stop-controlled two-lane minor
roads, TOTACC Main Model {Table 32)

Negative Binomial Mode! with K = 0.458

§ = NUMBER OF YEARS x (ADTI)"*" x (4DT2)"% x exp(-9.463)
x exp(0.110xPK%LEFTI - 0.484xLTLNIS)

where the variables are:

¢ = predicted mean number of crashes within 250 feet (76 meters) of the intersection
center

NUMBER OF YEARS
ADT1 = average two-way major road traffic in vehicles per day
ADT?2 = average two-way minor road traffic in vehicles per day

PK%LEFT! = the percentage of incoming major road traffic during peak hours that turns
14
1CIL

LTLNI1S = 0 if the major road has no left-turn lane, 1 if the major road has at least one
jeft-turn lane.
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I1. Four-legged rural intersections of a four-lane major road with stop-controtled two-lane minor
roads, TOTACCI Main Model (Table 33)

Negative Bimomial Model with K =0.710

§ = NUMBER OF YEARS x (ADTH" x (ADT2)"¥ x exp(-11.110)
x exp(0.149xPK%LEFTI)

where the variables are:

¢ = predicted mean number of intersection-related crashes within 250 feet (76 meters)
of the intersection center

NUMBER OF YEARS
ADT1 = average two-way major road traftic in vehicles per day
ADT?2 = average two-way minor road traffic in vehicles per day

PK%LEFT! = the percentage of all incoming major road traffic during peak hours that
turns left.
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Signalized Intersections
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Negative Binomial Model with K =0.116

§ = NUMBER OF YEARS x (ADTI)" x (ADT2)"* x exp(-6.954)
% exp(-0.0142%PK%LEFT2 + 6.0315xPK% TRUCK)

X poxn{-D.&7TSxPROT LT + 0. ﬂ’lﬂyf/ﬁ'FFﬂM\
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where the variables are:

¥ = predicted mean number of crashes within 250 feet (76 meters) of the intersection
center

NUMBER OF YEARS
ADT1 = average two-way major road traffic in vehicles per day
ADT2 = average two-way minor road traftic in vehicles per day

PK%LEFT2 = the percentage of all incoming minor road traffic during peak hours that
turns left

PK%TRUCK = the percentage of all incoming traffic during peak hours that ccnsists of
trucks

PROT_LT =0 if the major road has no protected left turn, 1 if the major road has at least
one protected left turmn

VEICOM = (1/2) (VEI-1 + VEI-2)

VEI-1 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each
vertical curve along the major road, any portion of which is within 800 feet (244
meters) of the intersection center, divided by the number of such curves

VEI-2 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each

vertical curve along the minor road, any portion of which is within 800 feet (244

meters) of the intersection center, divided by the number of such curves.

NOTE: A metric version of this model is obtained by replacing 0.130=xVEICOM above with
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0.0396xVEICOM,,, where VEICOM,, = (1/2)(VEL-1,, + VEIL-2_) and VEI-1,, and VEI-2, are as
above, except that units of absolute grade change per 100 meters are used for each vertical curve,
any portion of which is within 244 meters of the intersection center.

1. Sienalized four-legged rural intersections of two-lane roads, TOTACCI Main Model (Table
36}

Negative Binomial Model with KL= 0.731

y = NUMBER OF YEARS x (ADTIH*S x (ADT2)*?* x exp(-6.084)
x exp(-0.0165xPK%LEFT2 + 0.0289xPK%TRUCK)
x exp(-0.471xPROT_LT + 0.113xVEICOM)

where the variables are:

¢ = predicted mean number of intersection-related crashes within 250 feet (76 meters)
of the intersection center

NUMBER OF YEARS
ADT1 = average two-way major road traffic in vehicles per day
ADT?2 = average two-way minor road traffic in vehicles per day

PK%LEFT2 = the percentage of all incoming minor road traffic during peak hours that
turns left

PK%TRUCK = the percentage of all incoming traffic during peak hours that consists of
trucks

PROT LT = 0 if the major road has no protected left turn, 1 if the major road has at least
one protected left turn

VEICOM = (1/2) (VEI-1 + VEI-2)

VEL1 = the sum of absolute percent grade change per 100 feet (30.5 meters) for each
vertical curve along the major road, any pertion of which is within 800 feet (244
meters) of the intersection center, divided by the number of such curves

VEL-2 = the sum of absolute percent grade change per 100 fect (30.5 meters) for ecach
vertical curve along the minor road, any portion of which is within 800 feet (244

meters) of the intersection center, divided by the number of such curves.
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NOTE: A metric version of this model is obtained by replacing 0.113xVEICOM above with
0.0344xVEICOM,,, where VEICOM,, = (1/2}VEI-1, + VEL-2 ) and VEI-1 and VEI-2  are as
above, except that units of absolute grade change per 100 meters are used for each vertical curve,
any portion of which is within 244 meters of the intersection center.

EXPLANATORY VALUE OF MAIN MODELS

A customary way to measure the explanatory value of variables in a model is to note the increment
to a goodness-of-fit measure as each variable is added to the model. For Poisson and negative
binomial models, as Fridstrem et al. (1995) have observed, there is inherent randomness in: the model
that needs no explanation. With respect to the log-likelihood R-squared measure proposed by
Fridstrem et al., negative binomial randomness is represenied by 1 - P3 where PJ is as in equation
(5.5) of Chapter 5. The contribution of other factors is represented by: (1) Rj for the first variable
when a model with that variable present is used, and (ii) the increment in R} for each additional
variable as it is successively added to the model. Recall the definition of Rj in equation (5.4} of
Chapter 5. Finally, the unexplained portion of variation is P{, - R, where R}, is the R-squared value
obtained when all variables are present.

Tables 39, 40, and 41 and Figures 23, 24, and 25 decompose the variation according to this method
for each of the Main Models.

TABLE 39. Explanation of Variation in Total Crashes by Groups of Covariates,
Main Three-Legged Intersection Models

3-{egged Log-Likelithood
Intersection Coefficient of
Main Models (Tables 28 and 29) Determination (%)
TOTACC | TOTACCT
Randomness 44,11 46.26
Exposure (ADT1, ADT2) 18.21 17.31
Design (MEDWIDTHL, NODRWY1) | 4.26 5.02
Unexplained 33.42 31.41
TOTAL 100.060 100.00
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FIGURE 23. Explanation of Variation of TOTACC and TOTACCI
by Groups of Covariates, Main Negative Binomial Models for Three-Legged Intersections,
Log-Likelikood R-Squared

For the three-legged intersections, ADT explains 17 to 18% of the variation, while MEDWIDTHI
and NODRWY 1 explain another 4 to 5%. For the four-legged intersections, ADT explains 8 to 10%
of the variation, while major road left-turn percentage and/or the presence of a major road left-turn
explains another 5%.

In sharp contrast, for the signalized intersections, ADT by itself explains a negligible percentage of
crashes. Turning and truck percentages explain 1 to 3% and the design variables PROT_LT and
VEICOM explain between 6 and 13%, depending on the model. As Fridstrem et al. (1995, p. 11)
point out, the explanatory value of a variable may well be affected by the order in which variables
are added. This is amply demonstrated by Table 41 and Figure 25. A more cautious interpretation
of Table 41 is that in the case of the TOTACC model, 0.34 + 1.46 + 12.99 = 14.79% of the variation
is explained by the six intersection variables, and in the case of the TOTACCI model, 0.00 + 3.27

152




+ 6.16 = 9.43% of the variation is explained by the six intersection variables. Furthermore, the
proportion of the explanatory power that is attributable to the individual variables is uncertain. ADT
alone does not explain much.

TABLE 40. Explanation of Variation in Total Crashes by Groups of Covariates,
Main Four-Legged Intersection Models

4-Legged Log-Likelihood
Intersection Coefficient of
Main Models (Tables 32 and 33) Determination (%)

TOTACC § TOTACCI
Randomness 41.42 42 .85
Exposure (ADT1, ADT2) 10.79 8.14
PK%LEFT1 253 5.20
LTLNIS 2.89 -
Unexplained 42.35 43.81
TOTAL 100.00 100.00

TABLE 41. Explanation of Variation in Total Crashes by Groups of Covariates,
Main Signalized Intersection Models

Signalized Log-Likelihood

Intersection Coefficient of

Main Models {Tables 35 and 36) Determination (%)
TOTACC | TOTACCI

Randomness 37.38 41.46
Exposure (ADT1, ADT2) 0.34 0.00
PK%LEFT2, PK%TRUCK! 1.46 3.27
VEICOM, PROT LT 12.99 6.16
Unexplained 47.83 49.11
TOTAL 100.00 100.00
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FIGURE 24. Explanation of Variation of TOTACC and TOTACCI
by Groups of Covariates, Main Negative Binomial Models for Four-Legged Intersections,
Log-Likelihood R-Squared
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FIGURE 25. Explanation of Variation of TOTACC and TOTACCI
by Groups of Covariates, Main Negative Binomial Models for Signalized Intersections,
Log-Likeiihood R-Squared

ACCIDENT REDUCTION FACTORS

The Main Models yield the Accident Reduction Factors shown in Table 42. Recall that the Accident
Reduction Factor is the percentage decrease in mean predicted crash count when a variable 1s
increased by one unit, all other variables being held fixed. A negative value signifies that crashes
increase by that percentage when the variable 1Is increased by one unit.

For the three-legged intersections, the TOTACC and TOTACCI models yield similar results. 1113
a curiosity that the number of driveways is more significant for intersection-related crashes than for
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all crashes, given that the former attempts to exclude driveway crashes and the latter does not.

TABLE 42. Accident Reduction Factors for the Main Models

3-Legged intersections
TOTACC Main Model § TOTACCI Main Model
Table 28 Table 29
MEDWIDTH]1 5.3% 6.6%
NODRWYI -4.0% -5.7%
4-Legged intersections
TOTACC Main Model | TOTACCI Main Model
Table 32 Table 33
PK%LEFT1 -11.6% -16.1%
LTLNIS 38.4% -
Signalized intersecticns
TOTACC Main Model TOTACCI Main Model
Table 35 Tabie 30
PK%ILEFT2 1.4% 1.6%
PK%TRUCK -3.2% -2.9%
PROT LT 49.1% 37.5%
VEICOM -13.9% -11.9%

Note: Negative Accident Reduction Factors signify an increase in accidents.

For the four-legged intersections, the TOTACC model declares that the presence of one or more left-
turn lanes reduces crashes by 38.4%. LTLNIS had a high P-value (0.3222) when applied to
TOTACCI and appears only in the Variant 1 and Variant 3 models of Table 33. In the Variant 1
model, its Accident Reduction Factor is 25.1%, while that of PK%LEFT1 is -15.3%. The number
25.1% is not as large as 38.4%, but is still quite substantial.

Variables in the signalized intersection models show similar Accident Reduction Factors as one

passes from TOTACC to TOTACCI. Only PROT LT shows a dramatic decreases in its
effectiveness by going from 49.1% to 37.3%. The two regression coefficients for PROT_LT on
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which these estimates are based have overlapping confidence intervals so that the difference between
49.1% and 37.5% may be illusory.

The effect of PK%LEFT]1 in different models is of some interest. Consider TOTACC models for
all three classes of intersections containing this variable, namely, the Variant Model in Table 28, the
Main Model in Table 32, and Variant 2 in Table 35. The respective Accident Reduction Factors are
-5.6%, -11.6%, and -2.2%. For each 1-percent increase in laft turns from the major road, crashes
increase by 5.6%, 11.6%, and 2.2% at three-legged, four-legged, und signalized intersctacas,
respectively. A superficial justification of the relative sizes of these numbers runs as follows: at the
four-legged intersections, a driver turning left from the major road has to worry about traffic from
both minor legs; at a three-legged intersection, the driver has to worry about traffic from only one
minor leg; and at a signalized intersection, the driver has to worry about neither minor leg (as long
as the signal is green). Even if minor road ADT is low, the presence of minor legs requires some
division of attention.

SUMMARY

The Main Models presented at the beginning of this chapter are the primary product of this study.
There are six such models, one for each of the three intersection classes and for each of the two crash
types TOTACC and TOTACCI. Because our sample sizes were small, we judged it expedient to use
all observations for model development and reserve none for prediction, so no efforts have been
made to test the predictive powers of the models. The models are, however, reasonably stable:
potentially influential observations were removed and the models retained similar coefficients and
P-values.

With regard to the two crash types TOTACC and TOTACC]I, we do not make a selection. The
models for each are reasonably consistent with one another, the variables are mostly the same, and
the regression coefficients are similar. For the three-legged and four-legged intersections, the
exception is that as one passes from TOTACC to TOTACC], the intercept gets smaller and the
coefficient of the log of ADT1 gets larger. TOTACCI is more sensitive to major road ADT than
TOTACC. On the signalized intersections, in the same transition, the intercept gets larger and the
coefficients of the logs of both major and minor ADT get smaller. TOTACCI is less sensitive tc
ADT than TOTACC. These trends are systematic, but not tco much weight should be put on their.
since the standard errors of the coefficients do not preclude the possibility that the true coefficients
are equal (but there must be a net adjustment downward somewhere since TOTACCI < TOTACC).

Both the TOTACC models and the TOTACCI models are equally serviceable. A decision on which
to use should be based on what they will be used for and how overlapping models will be assembled
to represent all crashes. Of some importance is agreement among interested parties as to what an
intersection-related crash is. Desirable properties include simplicity, lLe., an understandable
definition, and practicality, i.¢., one that can be used to extract data from existing or soon-to-exist
data bases. The treatment of driveway crashes, run-off-road crashes. and minor road crashes that
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are not intersection-related should be addressed. Also, a decision 1s necded about whether the same
criteria can be used to define intersection-related crashes for different kinds of intersections: ones
with two-lane versus four-lane major roads, ones with or without signals, and ones 1n urban versus
rural environments. The BMI criteria discussed at the beginning of Chapter 4 were used in this
study, but they had a limited purpose and scope and their overall applicability should be reassessed.
The same considerations apply to INJACC versus INJACCI models.

similarities mirror those betweer the TOTACC and TOTACCT models.

A separate issue is whether injury crash models are needed. A reason not to develop them is that
it may suffice to apply a percentage to TOTACC or to TOTACCT in order to estimate INJACC or
INJACCI. Tables 9 and 10 in Chapter 4 suggest that injury crashes as a proportion of all accidents
vary at least by State and by intersection class. However, the State variable in this study seemed to
have no independent influence, and this is a significant finding of our study. Cur evidence suggests
that serious crashes at three-legged and four-legged intersections are not distributed in the same
proportion relative to all crashes at different intersections. Although we do not identify Main
Models for INJACC or INJACCI, we do develop INJACC and INJACCT models. [t is worthwhile
to compare such models with TOTACC/TOTACCI models. For the three-legged intersections, the
angle variable HAU assumes prominence and median width loses importance. For the four-legged
intersections, minor road posted speed gains influence and channelization loses influence. On the
other hand, INJACC/INJACCI models for signalized intersections are similar to the
TOTACC/TOTACCT models. Since injury crashes are of greater concern to society and are better

reported, contrasts between models for injury crashes and all crashes deserve attention.

We also argue that the variant models shown in the tables of Chapter 5 are worthy of attention.
When P-values are large, it is not possible to confirm that the true regression coefficient is non-zero,
Thus, an estimated regression coefficient of 0.3 with an estimated standard error of 0.3 could well
be a fluctuation for a variable whaose true coefficient is zero, the variable thus having no bearing on
crash experience. On the other hand, the fluctuation could run in the opposite direction and the true
regression coefficient might be §.6. The estimated coefficient 0.3 summanzes the sample at hand
accurately (as does its standard error 0.3) and may be regarded as a point estumate for the true
regression coefficient. It is the single best guess as to what that coefficient 1s. If'its standard error
is large, there is the possibility that this coefficient might be zero, but the true answer might also be
twice as large. If engineering judgment supports the sign and rough magnitude of a regression
coefficient, some latitude 1s in order.

Variant | in Table 33 is such a case. The variable LTLNIS, representing the existence of a lefi-tum
lane, has an estimated coefficient of -0.2891 with an estimated standard error of 0.2920 (and a P-
value of 0.3222) in a TOTACCI model. This variable is significant in the TOTACC model and is
significant in another TOTACCI model, Variant 3 in Table 33.

All of the models are, of course, subject to caveats. The definitions of TOTACC and TOTACCT are
imperfect. California and Michigan assign crashes to an intersectton out to different distances along
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the minor road. TOTACCI in California, but not in Michigan, may contain some driveway crashes

where a car is entering a driveway. Alignments, sight distances, grades, and median widths are

subject to measurement errors, and any and all variables may have changed from the time period

1993-1995 to the time of the field work (1997-1998).

Of special concern, since they are so prominent in the models, are the peak-hour traffic data. We
have referred to some of them as turning percentages or peak tuming percentages. But they are in
fact merely a sample of peak-hour turning percentages collected durmg a portion of peak hours on
a particular day in 1997-1998 and are averaged between moming and evening. They can be regarded
as crude estimates of the true average peak-hour turning percentages or truck percentages during
1993-1995. But even the variable one s trying to estimate I1s somewhat suspect. A peak hour can
be defined by a clock definition or by actual experience along a highway. The latter seems more
pertinent to crash experience, but the former is presumably closer to what we have.

Yet another issue, one that has not been addressed in this study, is how peak-hour turning
percentages should relate to ADT. If one were dealing with true mean tuming percentage, it would
seem that a mode] form would be required that yiclds zero crashes when all turning percentages are
zero. As a practical matter, if, for example, major road turning percentages are zero, then we can
usually assume that there is zero minor road traffic. Relationships can be built into the mode! form
to ensure that this happens. Since we are dealing with peak-hour turning percentages rather than true
mean 24-hour turning percentages, it is possible in principle that the former could be zero without
the latter being zero and that the latter could adjust itself to be compatible with almost any observed
values of ADT2 or ADT1. Rather than address these thorny issues, we have taken an empirical point
of view and allowed interrelated variables, such as the log of ADT1, the log of ADT2, PK%LEFTI,
PK9%LEFT2, and PK%THRU?2, to appear in generalized linear expressions without regard to their
+

nathatisal al rAanotratntg
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Indeed, especially in the case of the signalized intersections where ADT behaves somewhat
peculiarly when other variables are missing, as confirmed in Table 26 and Figure 9 as well as Table
41 and Figure 25, new model forms should be explored that might better describe the data. The
limited data in this study suggest that at signalized intersections, some measure of turning percentage
(e.g., PROT LT, PK%LEFTI, PK%LEFT2) should be adjotned to major and minor road ADT as
the primary intersection variables. It would also be desirable if new model forms retained some
affinity with existing forms that have been adequate for other classes.

One caveat for all of the models is that some variables have rather wide ranges, e.g., NODRWY,
PK%LEFT2, PK%TR. The coefficients assigned to these variables represent their behavior as
linear. Over such wide ranges, piecewise linear or quadratic dependencies might be more
appropriate. Ezra Hauer has suggested that model forms where the mean number of crashes depends

on major road ADT through expressions of the form (ADT1)y*xexp(-bxADT1) or exp(ax(Log of

ADT1) - bxADT1), with a and b positive, should be explored. Figures 5 and 9, for three-legged and
signalized intersections, respectively, suggest such a possibility. A similar form could be applied
to minor road ADT. More elaborate forms could also be considered that aliow crash frequency te
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rise to a maximum as ADT1 increases, with the value of ADT1 at which the maximum occurs
depending on ADT2.

We recapitulate the main points below:

. The data in this study have shortcomings. These include relatively small sample sizes, peak
turning percentages and truck percentages measured by samples not contemporary with the
crash data, and the difficulty of measuring and defining crash and intersection variables.

. In addition to the six Main Models, alternate models deserve consideration. These include
variants given in the tables using other variables, the Flow Models in Chapter 5, models that
restrict the range of certain inputs (piecewise linear) or allow quadratic dependencies, and
model forms suggested by Hauer.

° Major road ADT plays a lesser role as one passes from three-legged to four-legged to
signalized intersections, with turning percentage measures becoming more important, and
unexplained crash frequency variation increasing (Figures 23, 24, and 235).

. The six Main Models adequately summarize the data in this study, with the choice of a crash
variable TOTACC (all crashes within 250 feet (76 meters)) or TOTACCI (all intersection-
related crashes within 250 feet (76 meters)) to be determined by other criteria.
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APPENDIX. DATA FROM PILOT STUDY PHASE OF DATA COLLECTION

During the pilot study phase of data collection for this report, in March and May 1997, plates were
used to collect traffic data on minor legs of signalized intersections in Michigan and radar guns were
used to measure operating speeds on all legs of intersections in both California and Michigan.
Figures A-1, A-2, and A-3 exhibit some relationships obtained from these data. In addition an area-
of-influence study was done on a few selected intersections {0 judge whether crashes near the
intersection were intersection-related. Figure A-4 shows the findings for one such intersection.

Figure A-1 is a graph of posted speed versus observed operating speed at signalized intersections.
Operating speeds were determined by radar guns aimed along the road toward the intersection during
daytime hours out of sight of the intersection or far enough away so that drivers typically had not
begun to slow. The graph shows that many drivers exceed the posted speed limit, but that the excess
tends to be less at low and high speeds and greater at intermediate speeds.

Figure A-2 is a graph of daytime speeds versus 24-hour speeds along minor legs approaching
Michigan signalized intersections. Daytime speeds were measured by radar guns, and 24-hour
speeds by HISTAR/NU-METRICS plate counts. It 1s apparent that the 24-hour speeds are lower,
although some of the extreme cases may represent miscalibration of the radar guns and/or the plates.

Figure A-3 shows that truck percentage in off-hours tends to be higher than in peak hours. At the
end of Chapter 4, it is noted that 2.m. truck percentage is higher than p.m. truck percentage as weil,
and that Miaou et al. (1988) have called for studies of truck percentage by time-of-day. Between
am. and p.m., a rough reversal of movements was found for all traffic (e.g., southbound
predominance in a.m., northbound in p.m.) although variances were large. Truck percentage is a

emall nortion of the Tnfn] during peak hours, and may be i‘m‘ger in off-hours, r-h;ef{v hecause
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noncommercial fraffic lessens.

A few intersections in this study were examined in detail, in an effort to analyze the area of influence
of an intersection, i.e., how far out from the intersection center intersection-related crashes are likely
to be found. For this purpose, all crashes within 500 feet (152 meters) of the intersection center were
examined. Figure A-4 shows crash locations for one such intersection. A distance of 250 feet (76
meters) from the intersection center includes most intersection-related crashes, misses a few, and
picks up a few that are not intersection-related. Crashes that are not intersection-related are more
likely to be found on the outward bound lanes from the intersection center. One State highway
engineer reported intersection-related crashes that occurred on roads that did not pass through the
intersection. During heavy traffic, a driver turning onto an intersection leg from a side road is
sometimes involved in a crash related to the main intersection.
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POSTED SPEED VERSUS OPERATING SPEED
24 Signalized Intersections, Pilot Studies, CA & MI, 1897
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FIGURE A-1. Posted Speed Versus Operating Speed
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Daytime Speed vs. 24-hour Speed

19 Signalized Intersections, Minor Legs, Michigan, May 1897
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FIGURE A-2. Daytime Speed Versus 24-Hour Speed
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PEAK TRUCK PERCENTAGE VERSUS 24-HOUR TRUCK PERCENTAGE
19 Signalized Intersections, Minor Legs, Michigan, May 1987
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FIGURE A-3. Peak Truck Percentage Versus 24-Hour Truck Percentage
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CA State Route 28 intersects Fox Street in Placer County. This intersection (cnty rte = “03028 3177, milepost = 10.025) has minor leg
stop control, is of the T type, four-lane by two-lane, with a right angle, and no medians on any leg. The intersection is in roiiimg terrain
with a HAZRAT cqual to 2. The longitudinal sight distance for leg 1 is 800 feet (244 meters). Although the intersection is defined as
“ryral,” it is in the Lake Tahoe resort area with 12 commercial driveways along legs 1 and 2 within +250 feet (76 meters) of the intersection
center. This is a high-crash intersection with 17 crashes occurring within £500 feet (152 meters) of the intersection center during the years
1993-1995. On the basis of review of HSIS files, the crashes with numbers in parentheses were deemed not to be intersection-related.

Fox St. (Leg 3)

150t |
_W. Route 28 (Lep 1) E. Route 28 (Leg 2)
¢y M 6,12,13 - . . an
4,7,15 0
§ 14
2,3, 11
10
{1%)
500 400 250 150 100 S0 0 SO 100 150 250 400 500 ft

Crash locations are numbered; those with parentneses

are not thought to be intersection-related.
1 ft = 0.305 meters

FIGURE A-4. Crash Locations and Relationships at a Three-Legged Intersection
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