## Appendix



## Statistical Tests

B. 1 Student's t-test for comparison
of samples B. 2

Table of t-distribution B. 4
B. 2 Kolmogorov-Smirnov test B. 5
$\begin{array}{ll}\text { Table of } \boldsymbol{\chi}^{2} & \text { B. } 7\end{array}$
B. 3 The Tanner $k$ test B. 8
B. 4 The Chi-Squared test B. 9
$\begin{array}{llr}\text { B. } 5 & \begin{array}{l}\text { Test for statistical significance } \\ \text { between two proportions }\end{array} & \text { B. } 11\end{array}$
B. 6 Regression-to-the-mean correction B. 13

## Student's t-test for comparison of samples



## Student's t-test for comparison of samples (eg. sets of mean speed measurements)

To determine whether the mean speed of one set of speed measurements is significantly different from another (ie. between a "before" and "after" study), it is appropriate to use Student's two-tailed t-test, making the reasonable assumption that the variances of the two sets of measurements are drawn from the same population. The null hypothesis is thus that there is no difference in the means (ie. that drivers' speed has not been affected by the scheme). It is first necessary to determine the standard deviation of the difference in means.

$$
\begin{aligned}
& \text { Let } b_{1}, b_{2}, \ldots \ldots . b_{n b} \text { be the Before speed readings } \\
& \text { and } a_{1}, a_{2}, \ldots \ldots . a_{n a} \text { be the After speed readings }
\end{aligned}
$$

We then calculate the equations below:

$$
\text { Means: } \overline{\mathrm{b}}=\frac{\Sigma_{(\mathrm{bi})}}{\mathrm{nb}}, \overline{\mathrm{a}}=\frac{\Sigma_{\left(\mathrm{a}_{\mathrm{i}}\right)}}{\mathrm{n}_{\mathrm{a}}}
$$

$$
\begin{aligned}
\text { Standard deviation: } \begin{aligned}
\boldsymbol{\sigma} & =\sqrt{\frac{\Sigma_{\left(a_{i}\right)}{ }^{2}-\frac{\left(\Sigma_{\left(a_{i}\right)}\right)^{2}}{n_{a}}+\Sigma_{\left(b_{i}\right)}{ }^{2}-\frac{\left(\sum_{\left(b_{i}\right)}\right)^{2}}{n_{b}}}{\left(n_{a}+n_{b}-2\right)}} \\
t & =\frac{-\bar{a}-\bar{b}}{\sigma} \sqrt{\frac{n_{a} \times n_{b}}{n_{a}+n_{b}}}
\end{aligned}
\end{aligned}
$$

Having found the value of $\boldsymbol{t}$ we need to look at a table of Student's $t$ values (see page B-4), with ( $n_{a}+n_{b}-2$ ) degrees of freedom. If the value of $\boldsymbol{t}$ exceeds that for the $5 \%$ level (the $\boldsymbol{t}=0.05$ column) we can be $95 \%$ confident that the true mean speed has changed.

## Example

Assume that number of speed readings

| before a scheme, | $\mathrm{n}_{\mathrm{b}}=210$ |
| :---: | :---: |
| and the mean, | $\overline{\mathrm{b}}=37 \mathrm{mile} / \mathrm{h}$ |
| sum of readings | $\sum \mathrm{b}_{\mathrm{i}}=7770$ |
| sum of squares | $\sum\left(\mathrm{b}_{\mathrm{i}}\right)^{2}=291,142$ |

Similarly, after a scheme,

$$
\begin{aligned}
n_{a} & =220 \\
\bar{a} & =33 \text { mile } / \mathrm{h} \\
\sum a_{i} & =7260 \\
\sum\left(a_{i}\right)^{2} & =243,760
\end{aligned}
$$

From the above equations

$$
\text { standard deviation, } \begin{aligned}
\sigma & =\sqrt{\frac{243760-(7260)^{2} / 220+291142-(7770)^{2} / 210}{220+210-2}} \\
& =18.299 \\
t & =\frac{33-37}{18.299} \cdot \sqrt{\frac{220 \times 210}{220+210}} \\
& =2.265
\end{aligned}
$$

for degrees of freedom, $v=220+210-2$

$$
=428
$$

As the $\boldsymbol{t}$ value is greater than 1.96 (for the large number of degrees of freedom), then we can say that the mean difference in mean speeds (a 4 mile/h reduction) is significant at the $5 \%$ level.

Table of $\boldsymbol{t}$-distribution

| Degrees of <br> Freedom, $\imath$ | $t$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.10 | 0.05 | 0.02 | 0.01 | 0.001 |
| 1 | 6.314 | 12.706 | 31.821 | 63.657 | 636.619 |
| 2 | 2.920 | 4.303 | 6.965 | 9.925 | 31.598 |
| 3 | 2.353 | 3.182 | 4.541 | 5.841 | 12.941 |
| 4 | 2.132 | 2.776 | 3.747 | 4.604 | 8.610 |
| 5 | 2.015 | 2.571 | 3.365 | 4.032 | 6.859 |
| 6 | 1.943 | 2.447 | 3.143 | 3.707 | 5.959 |
| 7 | 1.895 | 2.365 | 2.998 | 3.499 | 5.405 |
| 8 | 1.860 | 2.306 | 2.896 | 3.355 | 5.041 |
| 9 | 1.833 | 2.262 | 2.821 | 3.250 | 4.781 |
| 10 | 1.812 | 2.228 | 2.764 | 3.169 | 4.587 |
| 11 | 1.796 | 2.201 | 2.718 | 3.106 | 4.437 |
| 12 | 1.782 | 2.179 | 2.681 | 3.055 | 4.318 |
| 13 | 1.771 | 2.160 | 2.650 | 3.012 | 4.221 |
| 14 | 1.761 | 2.145 | 2.624 | 2.977 | 4.140 |
| 15 | 1.753 | 2.131 | 2.602 | 2.947 | 4.073 |
| 16 | 1.746 | 2.120 | 2.583 | 2.921 | 4.015 |
| 17 | 1.740 | 2.110 | 2.567 | 2.898 | 3.965 |
| 18 | 1.734 | 2.101 | 2.552 | 2.878 | 3.922 |
| 19 | 1.729 | 2.093 | 2.539 | 2.861 | 3.883 |
| 20 | 1.725 | 2.086 | 2.528 | 2.845 | 3.850 |
| 21 | 1.721 | 2.080 | 2.518 | 2.831 | 3.819 |
| 22 | 1.717 | 2.074 | 2.508 | 2.819 | 3.792 |
| 23 | 1.714 | 2.069 | 2.500 | 2.807 | 3.767 |
| 24 | 1.711 | 2.064 | 2.492 | 2.797 | 3.745 |
| 25 | 1.708 | 2.060 | 2.485 | 2.787 | 3.725 |
| 26 | 1.706 | 2.056 | 2.479 | 2.779 | 3.707 |
| 27 | 1.703 | 2.053 | 2.473 | 2.771 | 3.690 |
| 28 | 1.701 | 2.048 | 2.467 | 2.763 | 3.674 |
| 29 | 1.699 | 2.045 | 2.462 | 2.756 | 3.659 |
| 30 | 1.310 | 2.042 | 2.457 | 2.750 | 3.646 |
| 40 | 1.684 | 2.021 | 2.423 | 2.704 | 3.551 |
| 60 | 1.671 | 2.000 | 2.390 | 2.660 | 3.460 |
| 120 | 1.658 | 1.980 | 2.358 | 2.617 | 3.373 |
| $\infty$ | 1.645 | 1.960 | 2.326 | 2.576 | 3.291 |

## KolmogorovSmirnov test



The 'two-tailed' Kolmogorov-Smirnov test determines whether two independent samples have been drawn from the same population (or from populations with the same distribution). If the two samples have in fact been drawn from the same population (the null hypothesis), then the cumulative distributions of both samples may be expected to be fairly close to each other, ie. they should show only random deviation from the population distributions. If the two sample cumulative distributions are too far apart at any point this suggests that they come from different populations. Thus a large enough deviation between the two sample cumulative distributions is evidence for rejecting the null hypothesis.

Let $S_{N a}(x)$ be the observed cumulative step function of the first speed sample
ie. $S_{N a}(x)=K / N_{a}$ where $K$ is the number of vehicles equal to or less than $x \mathrm{~km} / \mathrm{h}$ and $\mathrm{N}_{\mathrm{a}}$ is the total number of the sample. Let $S_{N b}(x)$ be the cumulative step function of the second sample. Now the Kolmogorov-Smirnov two-tail test focuses on the maximum deviation, $D$.

$$
\begin{equation*}
D=\operatorname{maximum}\left|S_{N a}(x)-S_{N b}(x)\right| \tag{1}
\end{equation*}
$$

For large samples ( $N>40$ ) Kolmogorov-Smirnov tables show that the value of $D$ must equal or exceed the value of:

$$
\text { 1.36. } \sqrt{\frac{N_{a}+N_{b}}{N_{a} N_{b}}}
$$

to reject the null hypothesis at the 5 per cent level, that is, that they are not from the same population.

The 'one-tailed' Kolmogorov-Smirnov test determines whether the two samples have been drawn from the same population or whether the values of one sample are stochastically larger than the values of the population from which the other sample was drawn. The maximum deviation is again calculated using equation (1) and the significance of the observed value of $D$ can be computed by reference to the chi-squared distribution. It has been shown that for large samples:

$$
\chi^{2}=4 D^{2} \frac{N_{a} N_{b}}{N_{a}+N_{b}}
$$

has a sampling distribution which is approximated to the chi-square distribution with two degrees of freedom. A chi-squared table for reference is given on page B-7.

## Example

Let us assume that Before and After speed measurements have given the following two distributions:-


If we plot these as cumulative speed distributions:


The observed cumulative step function of the After speed sample,

$$
\begin{aligned}
S_{N a}(x) & =K / N_{a}=193 / 210 \\
& =0.919
\end{aligned}
$$

For the Before sample,

$$
\text { The maximum deviation, } \quad \begin{aligned}
S_{N b}(x) & =K / N_{b}=135 / 210 \\
& =0.643 \\
\mathrm{D} & =0.919-0.643 \\
& =0.276
\end{aligned}
$$

The Kolmogorov-Smirnov value at the 5\% level

$$
\begin{aligned}
& =1.36(210+210 /(210 \times 210))^{-} \\
& =0.133
\end{aligned}
$$

which is less than the maximum deviation, and thus we can reject the null hypothesis at the $5 \%$ level. That is, in this case there is a significant difference between the two speed samples.

Table of $\chi^{2}$

| Degrees of Freedom, v |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.99 | 0.98 | 0.95 | 0.90 | 0.50 | 0.10 | 0.05 | 0.02 | 0.01 | 0.001 |
| 1 | 0.000 | 0.001 | 0.004 | 0.015 | 0.455 | 2.710 | 3.840 | 5.410 | 6.640 | 10.830 |
| 2 | 0.020 | 0.040 | 0.103 | 0.211 | 1.386 | 4.610 | 5.990 | 7.820 | 9.210 | 13.820 |
| 3 | 0.115 | 0.185 | 0.352 | 0.584 | 2.366 | 6.250 | 7.820 | 9.840 | 11.340 | 16.270 |
| 4 | 0.297 | 0.429 | 0.711 | 1.064 | 3.357 | 7.780 | 9.490 | 11.670 | 13.280 | 18.470 |
| 5 | 0.554 | 0.752 | 1.145 | 1.610 | 4.351 | 9.240 | 11.070 | 13.390 | 15.090 | 20.520 |
| 6 | 0.872 | 1.134 | 1.635 | 2.204 | 5.350 | 10.650 | 12.590 | 15.030 | 16.810 | 22.460 |
| 7 | 1.239 | 1.564 | 2.167 | 2.833 | 6.350 | 12.020 | 14.070 | 16.620 | 18.480 | 24.320 |
| 8 | 1.646 | 2.032 | 2.733 | 3.490 | 7.340 | 13.360 | 15.510 | 18.170 | 20.090 | 26.130 |
| 9 | 2.088 | 2.532 | 3.325 | 4.168 | 8.340 | 14.680 | 16.920 | 19.680 | 21.670 | 27.880 |
| 10 | 2.558 | 3.059 | 3.940 | 4.865 | 9.340 | 15.990 | 18.310 | 21.160 | 23.210 | 29.590 |
| 11 | 3.050 | 3.610 | 4.570 | 5.580 | 10.340 | 17.280 | 19.680 | 22.620 | 24.730 | 31.260 |
| 12 | 3.570 | 4.180 | 5.230 | 6.300 | 11.340 | 18.550 | 21.030 | 24.050 | 26.220 | 32.910 |
| 13 | 4.110 | 4.760 | 5.890 | 7.040 | 12.340 | 19.810 | 22.360 | 25.470 | 27.690 | 34.120 |
| 14 | 4.660 | 5.370 | 6.570 | 7.790 | 13.340 | 21.060 | 23.690 | 26.870 | 29.140 | 36.120 |
| 15 | 5.230 | 5.990 | 7.260 | 8.550 | 14.340 | 22.310 | 25.000 | 28.260 | 30.580 | 37.700 |
| 16 | 5.810 | 6.610 | 7.960 | 9.310 | 15.340 | 23.540 | 26.300 | 39.360 | 32.000 | 39.250 |
| 17 | 6.410 | 7.260 | 8.670 | 10.090 | 16.340 | 24.770 | 27.590 | 31.000 | 33.410 | 40.790 |
| 18 | 7.020 | 7.910 | 9.390 | 10.870 | 17.340 | 25.990 | 28.870 | 32.350 | 34.810 | 42.310 |
| 19 | 7.630 | 8.570 | 10.120 | 11.650 | 18.340 | 27.200 | 30.140 | 33.690 | 36.190 | 43.820 |
| 20 | 8.260 | 9.240 | 10.850 | 12.440 | 19.340 | 28.410 | 31.410 | 35.020 | 37.570 | 45.320 |
| 21 | 8.900 | 9.910 | 11.590 | 13.340 | 20.340 | 29.610 | 32.670 | 36.340 | 38.930 | 46.800 |
| 22 | 9.540 | 10.600 | 12.340 | 14.040 | 21.340 | 30.810 | 33.920 | 37.660 | 40.290 | 48.270 |
| 23 | 10.200 | 11.290 | 13.090 | 14.850 | 22.340 | 32.010 | 35.170 | 38.970 | 41.640 | 49.730 |
| 24 | 10.860 | 11.990 | 13.850 | 15.660 | 23.340 | 33.200 | 36.420 | 40.270 | 42.980 | 51.180 |
| 25 | 11.520 | 12.700 | 14.610 | 16.470 | 24.340 | 34.380 | 37.650 | 41.570 | 44.310 | 52.620 |
| 26 | 12.200 | 13.410 | 15.380 | 17.290 | 25.340 | 35.560 | 38.890 | 42.860 | 45.640 | 64.050 |
| 27 | 12.880 | 14.120 | 16.150 | 18.110 | 26.340 | 36.740 | 40.110 | 44.140 | 46.960 | 55.480 |
| 28 | 13.560 | 14.850 | 16.930 | 18.940 | 27.340 | 37.920 | 41.340 | 45.420 | 48.280 | 56.890 |
| 29 | 14.260 | 15.570 | 17.710 | 19.770 | 28.340 | 39.090 | 42.560 | 46.690 | 49.590 | 58.300 |
| 30 | 14.950 | 16.310 | 18.490 | 20.600 | 29.340 | 40.260 | 43.770 | 47.960 | 50.890 | 59.700 |
| 40 | 22.164 | 23.838 | 26.509 | 29.051 | 39.335 | 51.805 | 55.759 | 60.436 | 63.691 | 73.402 |
| 50 | 29.707 | 31.664 | 37.689 | 37.689 | 49.335 | 63.167 | 67.505 | 72.613 | 76.154 | 86.661 |
| 60 | 37.485 | 39.699 | 43.188 | 46.459 | 59.335 | 74.397 | 79.082 | 84.580 | 88.379 | 99.607 |
| 70 | 45.442 | 47.839 | 51.739 | 55.329 | 69.334 | 85.527 | 90.531 | 96.388 | 100.425 | 112.317 |
| 80 | 53.539 | 56.213 | 60.391 | 64.278 | 79.334 | 96.578 | 101.880 | 108.069 | 112.329 | 124.839 |
| 90 | 61.754 | 64.634 | 69.126 | 73.291 | 89.334 | 107.565 | 113.145 | 119.646 | 124.116 | 137.208 |
| 100 | 70.065 | 73.142 | 77.929 | 82.358 | 99.334 | 118.498 | 124.342 | 131.142 | 135.807 | 149.449 |

## The Tanner k test



The Tanner $k$ test can be used to show how the accident numbers at a site change relative to control data.

For a given site or group of similarly treated sites, let:
$a=$ before accidents at site
$b=$ after accidents at site
$c=$ before accidents at control
$d=$ after accidents at control
then:

$$
k=\frac{b / a}{d / c}
$$

or, if any of the frequencies are zero then $1 / 2$ should be added to each, ie:

$$
k=\frac{(b+1 / 2) \cdot(c+1 / 2)}{(a+1 / 2) \cdot(c+1 / 2)}
$$

If $k<1$ then there has been a decrease in accidents relative to the control;
if $k=1$ then there has been no change relative to the control; and
if $k>1$ then there has been an increase relative to the control.
The percentage change at the site is given by:-

$$
(k-1) \times 100 \%
$$

## Example

Let us assume that the table below gives the annual injury accident totals for a priority T-junction in a semi-urban area which had Stop signs on the minor road originally, but where a roundabout was installed three years ago. The control data used are accidents on all other priority junctions in the Authority over exactly the same 3 -year before and 3 -year after periods.

Injury accident totals in 3-year periods at treated site and controls

|  | Site | Control | Total |
| :--- | :--- | :--- | :--- |
| Before | $20_{\text {(a) }}$ | $418_{\text {(c) }}$ | $438_{\text {(g) }}$ |
| After | $6_{\text {(b) }}$ | $388_{\text {(d) }}$ | $394_{\text {(h) }}$ |
| Total | $26_{\text {(e) }}$ | $806_{\text {(f) }}$ | $832_{\text {(n) }}$ |

Using the notation and formula above,

$$
k=\frac{6 / 20}{388 / 418}=0.323
$$

Therefore, as $k<1$ there has been a decrease in accidents relative to the controls of:

$$
(k-1) \times 100 \%=67.7 \%
$$

## The <br> Chi-Squared test



This test can be used to determine whether the change in accidents was produced by the treatment or whether this occurred by chance. This test thus determines whether the change is statistically significant. The test is based on a table showing both the observed values of a set of data $(\mathrm{O})$ and the corresponding expected values (E). The chi-squared statistic is then given by:

$$
\chi^{2}=\sum_{i=1, k=1}^{n, m} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

where $\quad \mathrm{O}_{\mathrm{ij}}$ is the observed value in column j , row i of the table $E_{i j}$ is the expected value in column $j a$, row $i$ of the table m is the number of columns n is the number of rows

A chi-squared table (as on page B.2-3) is then used to look up this value which shows the probability that the 'expected' value and the 'observed' values are drawn from the same population. The number of degrees of freedom is also required and this is given by:

Degrees of freedom, $v=(\mathrm{n}-1)(\mathrm{m}-1)$.
For a site accident evaluation, where its accidents are compared in similar periods before and after treatment with a set of control sites for the same periods, we have a 2 by 2 contingency table ( 2 columns and 2 rows with degrees of freedom $=1$ ). For the test to be valid the value of any cell of the table should not ideally be less than 5 . However, when testing an individual site for accidents then this situation can, of course, be quite common and so a slight modification (known as Yates' correction) is normally applied.

## Example

Consider the same example as given in Appendix B3:

Injury accident totals in 3-year periods at treated site and controls

|  | Site | Control | Total |
| :--- | :---: | :---: | :---: |
| Before | $20_{\text {(a) }}$ | $418 \quad$ (c) | $438 \quad$ (g) |
| After | $6{ }_{\text {(b) }}$ | $388_{\text {(d) }}$ | $394_{\text {(h) }}$ |
| Total | $26_{\text {(e) }}$ | $806_{\text {(f) }}$ | $832_{\text {(n) }}$ |

For such a $2 \times 2$ table, a special simplified formula can be used for chi-squared which, using the notation from the above table, is:

$$
\chi^{2}=\frac{\left(|a d-b c|-\frac{n}{2}\right)^{2} \cdot n}{e f g h}
$$

Its value is then compared with values in the Chi-squared table (page B-7) with degrees of freedom, $v=1$, and if it is just greater than a particular value it is said to be statistically significant at at least that percentage level.

$$
\begin{aligned}
& \chi^{2}=\frac{\left(|20 \times 388-6 \times 418|-\frac{832}{2}\right)^{2} \times 83}{26 \times 806 \times 438 \times 394} \\
& \chi^{2}=5.38
\end{aligned}
$$

Now looking at the chi-squared distribution table (page B-7) and the first line (one degree of freedom, $v=1$ ), the value for chi-square of 5.38 lies between 3.84 and 5.41. This corresponds to a value of significance level (on the column header line) between 0.05 and 0.02 , which is normally quoted as greater than the lower level, ie. better than the $5 \%$ level of significance.

This means that there is only a 5\% likelihood (or 1 in 20 chance) that the change in accidents is due to random fluctuation. Another way of stating this is that there is a $95 \%(100 \%-5 \%)$ confidence that a real change in accidents has occurred at the junction.

The 5\% level or better is widely accepted as the level in which the remedial action has certainly worked, though the $10 \%$ level can be regarded as an indication of an effect.

For groups of sites that have been given the same treatment, these can be grouped together and analysed using the chi-squared test as for a single site. This will enable the overall benefit to be evaluated, and any specific sites can be analysed separately.

## Test for statistical significance between two proportions



This test is used to determine whether proportions (of accident types, or of any other characteristic) in a study area are significantly different from the proportion in a control area. The null-hypothesis tested is that the proportion from the sample is the same as the proportion from the control, and the test tells us if we can reject this hypothesis.

There are two situations to consider, firstly where the study area is not contained within the control area and secondly where it is within the control area.

Suppose that we are interested in the proportion of all accidents area that involve serious injury within a study as compared to a control area. We test the hypothesis that the proportions are the same. If the number of all accidents in the study area is $n_{s}$ and in the control area is $n_{c}$, and we observe $m_{s}$ serious accidents in the study area and $m_{c}$ in the control area, then:

## 1. Study area not within control area

The proportion in the Study area is given by: $\mathrm{p}_{\mathrm{s}}=\mathrm{m}_{\mathrm{s}} / \mathrm{n}_{\mathrm{s}}$, and the proportion in the Control area by: $\quad p_{c}=m_{c} / n_{c}$ and the overall proportion in the Total area (both study and control areas) by:

$$
p=\left(m_{s}+m_{c}\right) /\left(n_{s}+n_{c}\right)
$$

The test statistic ' $\mathbf{t}$ ' is calculated by: $\mathbf{t}=\left(p_{s}-p_{c}\right) /\left(p(1-p)\left(1 / n_{s}+1 / n_{c}\right)\right)^{1 / 2}$
with $\left(n_{s}+n_{c}-2\right)$ degrees of freedom. If the degrees of freedom are greater than 120 , and $\mathbf{t}$ is greater than 1.96 then we can be $95 \%$ sure that the two proportions are from different populations.

## 2. Study area within control area

Suppose the study area is a local authority area and national data are being used as a control. Then, for the purposes of this test, the Study accidents need to be excluded from the Control and the numbers of accidents in the Control area is calculated as 'the Total (national) accidents - Study accidents'.

The proportion in the Study area is given by: $p_{s}=m_{s} / n_{s}$
and the proportion in the Control area by
$p_{c}=\left(m_{c-} m_{s}\right) /\left(n_{c}-n_{s}\right)$
and the overall proportion in the Total area by: $p=m_{c} / n_{c}$

The test statistic ' $\mathbf{t}$ ' is calculated by: $\mathbf{t}=\left(\mathrm{p}_{\mathrm{s}}-\mathrm{p}_{\mathrm{c}}\right) /\left(\mathrm{p}(1-\mathrm{p})\left(1 / n_{s}+1 /\left(n_{c}-n_{s}\right)\right)\right)^{1 / 2}$
with $\left(\mathrm{n}_{\mathrm{c}}-2\right)$ degrees of freedom. If the degrees of freedom are greater than 120 , and $\mathbf{t}$ is greater than 1.96 then we can be $95 \%$ sure that the two proportions are from different populations. (If $n_{c}$ is large compared to $n_{s}$, then we can ignore the fact that the study area is within the national area and use method 1).

## Example

Suppose that we are interested in whether the proportion of accidents at rural junctions in the study area is different from the proportion nationally. Then consider the following (fictitious) data:

|  | Rural junction <br> accidents | All Rural <br> accidents | Proportion at <br> junctions |
| :--- | :---: | :---: | :---: |
| Total accidents nationally | 32,000 | 80,000 | 0.400 |
| Study area | 3200 | 7750 | 0.4129 |

Since rural junction accidents are included within all rural accidents, approach 2 is the appropriate test. The null-hypothesis is that the proportion of rural accidents that are at junctions in the study area is the same as the proportion of accidents elsewhere in the country that are at junctions.

The proportion in the Study area is given by: $\quad p_{s}=3200 / 7750=0.4129$ and the proportion in the Control area by: $\quad \mathrm{P}_{\mathrm{c}}=(32,000-3200) /(80,000-$ $7750)=0.3986$
and the overall proportion in the Total area by: $p=32,000 / 80,000=0.400$

The test statistic ' $\mathbf{t}$ ' is calculated by:

$$
\begin{aligned}
\mathbf{t}=\quad & (0.4129-0.3986) /\left(0.4^{*}(1-0.4)^{*}(1 / 7750+1 /(80,000-7750))\right)^{1 / 2} \\
& =2.44 \\
& \text { with }(80,000-2) \text { i.e. } 79,998 \text { degrees of freedom }
\end{aligned}
$$

So since the number of degrees of freedom is greater than 120 and $\mathbf{t}$ is greater than 1.96, we can be at least $95 \%$ sure that the proportion of accidents at junctions in our rural study area is greater than the proportion at junctions on other rural roads. Therefore we would recommend that further investigations are carried out to try and explain this result (see Barker et al (1999) for a more detailed explanation of how to interpret the result).

## Regression-to-themean correction



To correct for the regression-to-the-mean effect it is necessary to estimate the true underlying accident rate. Several statisticians have proposed ways of doing this, eg. Hauer (1992) extended the Empirical Bayes' model to estimate the true underlying accident rate and then based the evaluation on this rather than the raw data. However, an approach that is simpler to apply for a single site was described by Abbess et al (1981), in which they adjusted the data to correct for biases using assumptions about the distribution of accidents over a period of years.

Accident data must be gathered for similar sites to the treated site over the same time period: the control sites. Using this full dataset the mean number of accidents, $a$, and the variance of accidents var (a) are calculated. The regression-to-the-mean effect, R (in per cent) was shown to be given by the following formula:

$$
R=\left(\frac{\left(A_{t}+A\right) n^{\prime}}{\left(n_{t}+n\right) A}-1\right) \cdot 100
$$

where $\quad A=$ the number of accidents at the site over a period of $n$ years

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{t}}=\frac{a^{2}}{\left(\operatorname{var}(a)^{-a}\right)} \\
& \mathrm{n}_{\mathrm{t}}=\frac{a}{\left(\operatorname{var}(a)^{-a)}\right.}
\end{aligned}
$$

$A_{t}$ and $n_{t}$ are the estimates of the parameters of the statistical distribution showing the true underlying accident rates, ie. the probability distribution of the accident rate before any data are available. The main assumption is, therefore, that the study site with a particular accident history will behave in the same way as the set of all similar sites with the same accident history.

## Example

Let us consider a junction, which has had an average of 15 accidents per year over the past 5 years. The site was widened, large new junction signing, splitter islands and STOP signs installed, after which the site has averaged 10 accidents per year over a similar period.

To correct for the regression-to-mean effect, we need to select similar uncontrolled junction sites with similar traffic flows. If all these sites have produced a mean, $a$, of 12.6 accidents per year with a variance, $\operatorname{var}(a)$, of 2.91, then using the equation above, the input values are:

$$
\begin{aligned}
& n=5 \text { (years) } \\
& A=75 \text { (accidents) } \\
& A_{t}=12.62 /(2.91-12.6)=-16.38 \\
& n_{t}=12.6 /(2.91-12.6)=-1.3
\end{aligned}
$$

Thus the Regression effect:-

$$
\begin{aligned}
R & =\left(\frac{(-16 \cdot 38+75) 5}{(-1.3+5) 75}-1\right) \cdot 100 \\
& =5.2 \%
\end{aligned}
$$

That is, during the after period we would expect that if nothing were done to the site, the accidents would reduce by 5.2 per cent, or to 14.25 accidents per year. Thus it is the figure of 14.25 accidents per year that should be compared with the 10 accidents per year that actually occurred to determine whether the reduction in accident frequency due to the improvements is statistically significant.

